Evaluating a Meijer G-function
- To: mathgroup at smc.vnet.net
- Subject: [mg69438] Evaluating a Meijer G-function
- From: Raul Martinez <raulm231 at comcast.net>
- Date: Tue, 12 Sep 2006 06:53:50 -0400 (EDT)
I have the following special case of Meijer's G-function:
g = MeijerG[{{1/ 2, 1/ 2}, {1}}, {{0, 0, 0}, { }}, 4 / t^2] / (2 Pi),
where t is real.
When I evaluate it numerically for a sequence of decreasing small t,
0 < t < 1, it is clear that the value approaches 0 as t -> 0.
But neither
N[g /. t -> 0]
nor
Limit[g, t -> 0]
yields the result that g = 0.
Can anyone show that g -> 0 as t -> 0?
I've consulted functions.wolfram.com, mathworld.wolfram.com, and many
other web sites and reference works, to no avail.
Thanks in advance.
Raul