more in Assumptions
- To: mathgroup at smc.vnet.net
- Subject: [mg74989] more in Assumptions
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Fri, 13 Apr 2007 02:11:38 -0400 (EDT)
On the same vein with some recent posts of mine, let me consider the integral of f[x,a,c] in the range [0,infinity), where In[93]:= f[x_, a_, c_] := 1/(x^4 + 2*a*x^2 + 1 + c) Let investegate ranges of a,c in which the integral converges. (I am interested in real values.) In the integration limits we have In[95]:= f[x, a, c] + O[x]^6 f[x, a, c] + O[x, Infinity]^6 Out[95]= SeriesData[x, 0, {(1 + c)^(-1), 0, (-2*a)/(1 + c)^2, 0, (4*a^2)/(1 + c)^3 - (1 + c)^(-2)}, 0, 6, 1] Out[96]= SeriesData[x, Infinity, {1}, 4, 6, 1] So in Infinity there is not problem, whereas in zero, it must be c != -1. With this in mind we examine the denominator of f[x,a,c] for possible poles in the integration range. In[100]:= ToRadicals[Reduce[Denominator[f[x, a, c]] == 0 && c < -1 && x > 0, x, Reals]] ToRadicals[Reduce[Denominator[f[x, a, c]] == 0 && c > -1 && x > 0, x, Reals]] Out[100]= c < -1 && x == -Sqrt[-a - Sqrt[-1 + a^2 - c]] Out[101]= a < 0 && ((-1 < c < -1 + a^2 && (x == Sqrt[-a + Sqrt[-1 + a^2 - c]] || x == -Sqrt[-a + Sqrt[-1 + a^2 - c]])) || (c == -1 + a^2 && x == Sqrt[-a + Sqrt[-1 + a^2 - c]])) In[102]:= ToRadicals[Reduce[Denominator[f[x, a, c]] == 0 && c > -1 && x > 0 && a > 0, x, Reals]] ToRadicals[Reduce[Denominator[f[x, a, c]] == 0 && c > -1 && x > 0 && a < 0, x, Reals]] Out[102]= False Out[103]= a < 0 && ((-1 < c < -1 + a^2 && (x == Sqrt[-a + Sqrt[-1 + a^2 - c]] || x == -Sqrt[-a + Sqrt[-1 + a^2 - c]])) || (c == -1 + a^2 && x == Sqrt[-a + Sqrt[-1 + a^2 - c]])) In[104]:= ToRadicals[Reduce[Denominator[f[x, a, c]] == 0 && c > -1 + a^2 && x > 0 && a < 0, x, Reals]] Out[104]= False I think we have enough evidence that the integral converges for {a<0&&c > -1 + a^2 and a>0&&c>-1}. However Mathematica for each one of the following commands return alsmost the same unecessary complicated If[...] structure (*outputs are ommited*) In[124]:= Integrate[f[x, a, c], {x, 0, Infinity}, Assumptions -> Element[{a, c} , Reals]] In[125]:= Integrate[f[x, a, c], {x, 0, Infinity}, Assumptions -> a < 0] In[126]:= Integrate[f[x, a, c], {x, 0, Infinity}, Assumptions -> a > 0 && c > -1] In[127]:= Integrate[f[x, a, c], {x, 0, Infinity}, Assumptions ->a < 0 && c > -1 + a^2] Let see some examples with specific values for {a,c} In[132]:= Integrate[f[x, 1, -9/10], {x, 0, Infinity}](*a>0&&c>-1*) {N[%], NIntegrate[f[x, 1, -9/10], {x, 0, Infinity}]} Integrate[f[x, -2, 3 + 1/10], {x, 0, Infinity}](*a<0&&c>-1+a^2*) {N[%], NIntegrate[f[x, -2, 3 + 1/10], {x, 0, Infinity}]} Integrate[f[x, 1, -1], {x, 0, Infinity}](*a>0&&c<=-1*) Integrate[f[x, -2, 3], {x, 0, Infinity}](*a<0&&c<=-1+a^2*) Out[132]= (1/6)*Sqrt[50 - 5*Sqrt[10]]*Pi Out[133]= {3.061535891296801, 3.0615358912965314} Out[134]= (5*Pi)/Sqrt[82*(-20 + Sqrt[410])] Out[135]= {3.48007,3.48007} Integrate::idiv: Integral of 1/(2*x^2 + x^4) does not converge on \ {0,Infinity}. Out[136]= Integrate[1/(2*x^2 + x^4), {x, 0, Infinity}] Integrate::idiv: Integral of 1/(-2 + x^2)^2 does not converge on {0,Infinity}. Out[137]= Integrate[1/(4 - 4*x^2 + x^4), {x, 0, Infinity}] and compare them with the result of the symbolic definite integration In[145]:= ff = Integrate[f[x, a, c], {x, 0, Infinity}] FullSimplify[% /. {{a -> 1, c -> -9/10}, {a -> -2, c -> 3 + 1/10}}] N[%] Out[145]= If[Im[Sqrt[-a - Sqrt[-1 + a^2 - c]]] > 0 && Im[Sqrt[-a + Sqrt[-1 + a^2 - c]]] > 0, -((I*Pi)/(2*(Sqrt[-a - Sqrt[-1 + a^2 - c]] + Sqrt[-a + Sqrt[-1 + a^2 - c]])*Sqrt[-a - Sqrt[-1 + a^2 - c]]* Sqrt[-a + Sqrt[-1 + a^2 - c]])), Integrate[1/(1 + c + 2*a*x^2 + x^4), {x, 0, Infinity}, Assumptions -> Im[Sqrt[-a - Sqrt[-1 + a^2 - c]]] <= 0 || Im[Sqrt[-a + Sqrt[-1 + a^2 - c]]] <= 0]] Out[146]= {(5*Pi)/Sqrt[2*(10 + Sqrt[10])], (5*Pi)/Sqrt[82*(-20 + Sqrt[410])]} Out[147]= {3.061535891296801, 3.480066694467329} Indeed the symbolic definite integration result is correct, but the question of its unecessary (?) complicated form still remains. Seeing carefully the following I think there is a connection with Mathematica's antiderivative In[191]:= Integrate[f[x, a, c], x] Out[191]= (ArcTan[x/Sqrt[a - Sqrt[-1 + a^2 - c]]]/Sqrt[a - Sqrt[-1 + a^2 - c]] - ArcTan[x/Sqrt[a + Sqrt[-1 + a^2 - c]]]/ Sqrt[a + Sqrt[-1 + a^2 - c]])/(2*Sqrt[-1 + a^2 - c]) In[190]:= Integrate[f[x, a, c], {x, 0, Infinity}, Assumptions -> Im[Sqrt[-a - Sqrt[-1 + a^2 - c]]] > 0 && Im[Sqrt[-a + Sqrt[-1 + a^2 - c]]] > 0] Out[190]= -((I*Pi)/(2*(Sqrt[-a - Sqrt[-1 + a^2 - c]] + Sqrt[-a + Sqrt[-1 + a^2 - c]])*Sqrt[-a - Sqrt[-1 + a^2 - c]]* Sqrt[-a + Sqrt[-1 + a^2 - c]])) but I don't see any mathematical reason that could support this fact. Any insight will be greatly appreciate. Dimitris