Re: CrossProduct in Spherical Coordinates
- To: mathgroup at smc.vnet.net
- Subject: [mg75342] Re: CrossProduct in Spherical Coordinates
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Wed, 25 Apr 2007 05:45:43 -0400 (EDT)
- Organization: The Open University, Milton Keynes, UK
- References: <f0kbsf$r1k$1@smc.vnet.net>
gogoant06 at yahoo.com.hk wrote: > Dear all, > > I am really new to mathematica and I have met a damn simple problem. > > In[1]:= > <<Calculus`VectorAnalysis` > > In[2]:= > CrossProduct[{1,0,0},{0,1,0},Spherical] Here you tell Mathematica that _the given vectors are expressed_ in spherical coordinates. You are not asking Mathematica to convert from one system of coordinates (which one?) to spherical coordinates. > Out[2]= > {0,0,0} > > Why? Isn't the result supposed to be {0,0,1}, even in spherical > coordinates? No. The point (0, 0, 1) in Cartesian coordinates is (1, 0, 0) in spherical coordinates. The following examples should illustrate how to use the package. In[1]:= << "Calculus`VectorAnalysis`" In[2]:= CoordinateSystem[] Out[2]= Cartesian[] In[3]:= pt1 = CoordinatesFromCartesian[{1, 0, 0}, Spherical] Out[3]= Pi {1, --, 0} 2 In[4]:= pt2 = CoordinatesFromCartesian[{0, 1, 0}, Spherical] Out[4]= Pi Pi {1, --, --} 2 2 In[5]:= pt3 = CrossProduct[pt1, pt2, Spherical] Out[5]= {1, 0, 0} In[6]:= CoordinatesToCartesian[pt3, Spherical] Out[6]= {0, 0, 1} In[7]:= SetCoordinates[Spherical[r, theta, phi]] Out[7]= Spherical[r, theta, phi] In[8]:= CoordinateRanges[] Out[8]= {0 <= r < Infinity, 0 <= theta <= Pi, -Pi < phi <= Pi} In[9]:= pt1 = CoordinatesFromCartesian[{1, 0, 0}] Out[9]= Pi {1, --, 0} 2 In[10]:= pt2 = CoordinatesFromCartesian[{0, 1, 0}] Out[10]= Pi Pi {1, --, --} 2 2 In[11]:= pt3 = CrossProduct[pt1, pt2] Out[11]= {1, 0, 0} In[12]:= CoordinatesToCartesian[pt3] Out[12]= {0, 0, 1} Regards, Jean-Marc