Re: Mathematica precision for a^b
- To: mathgroup at smc.vnet.net
- Subject: [mg73505] Re: Mathematica precision for a^b
- From: Jean-Marc Gulliet <jeanmarc.gulliet at gmail.com>
- Date: Wed, 21 Feb 2007 01:33:09 -0500 (EST)
- Organization: The Open University, Milton Keynes, UK
- References: <1171965456.017093.124290@m58g2000cwm.googlegroups.com>
sonyaBabken at yahoo.de wrote: > Hallo > I am new to mathematica. I have mathematica 5.1. > If I have the expresion a^b where a is an arbitrary double precision > decimal number and b is an exact number say a list from 1-10. How can > I see that the precision of this expression changes when raising a to > these powers? > Many thanks in advance > Sonya > Hi Sonya, The precision of the results does not change: since you have a mix of hardware precision numbers and exact numbers the overall precision is lowered to machine precision and the computations are done using the functions implemented in the hardware. Detailed explanations are given in "The Mathematica Book Online / Advanced Mathematics in Mathematica / Numbers / 3.1.4 Numerical Precision", available at http://documents.wolfram.com/mathematica/book/section-3.1.4 To see the precision of a Mathematica expression, you can use the built-in function Precision [1]. For instance, In[1]:= a = 2.; In[2]:= Precision[a] Out[2]= MachinePrecision In[3]:= b = Range[10] Out[3]= {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} In[4]:= Precision /@ b Out[4]= {Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity, Infinity} In[5]:= a^b Out[5]= {2., 4., 8., 16., 32., 64., 128., 256., 512., 1024.} In[6]:= Precision /@ % Out[6]= {MachinePrecision, MachinePrecision, MachinePrecision, MachinePrecision, MachinePrecision, MachinePrecision, MachinePrecision, MachinePrecision, MachinePrecision, MachinePrecision} In[7]:= $MachinePrecision Out[7]= 15.9546 In[8]:= $Version Out[8]= 5.2 for Microsoft Windows (June 20, 2005) Regards, Jean-Marc [1] http://documents.wolfram.com/mathematica/functions/Precision