Re: Approximate/asymptotic factorization
- To: mathgroup at smc.vnet.net
- Subject: [mg73573] Re: Approximate/asymptotic factorization
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Thu, 22 Feb 2007 04:31:30 -0500 (EST)
- References: <ergpj1$h7f$1@smc.vnet.net>
Paul Abbott wrote: >Consider the monomial H[4,4] > > 256*(23625 + 126000*z^4 - 7200*z^8 + 3840*z^12 + 256*z^16) > > > >Then consider the monomial Q[4,4] > > 1528899609315374375625 + 6795109374734997225000*z^4 - > 560866170613047390000*z^8 + 153399294526645440000*z^12 + > 2734590598399296000*z^16 - 167891551278796800*z^20 + > 2948686820352000*z^24 - 40649991782400*z^28 + 277762867200*z^32 - > 920125440*z^36 + 1048576*z^40 > > > > > It is a scale problem in the roots: -1.5394683843101908/(-1.4575368807601277) 1.0562123021596095 q[x_] = ExpandAll[256*(23625 + 126000*z^4 - 7200*z^8 + 3840*z^12 + 256*z^16) /. z -> (x/1.0562123021596095)] (6048000 + 2.591824698102241`*^7 x^4 - 1.1900430955379773`*^6 x^8 + 509983.9759955976` x^12 + 27318.722400416882` x^16) c = Table[{Re[x], Im[x]} /. NSolve[q[x] == 0, x][[n]], {n, 1, 16}] This sub-polynomial gives very close to the same roots for the square lattice of roots at the center of z^40 polynomial.