Re: Apart question
- To: mathgroup at smc.vnet.net
- Subject: [mg73055] Re: Apart question
- From: "dimitris" <dimmechan at yahoo.com>
- Date: Wed, 31 Jan 2007 00:32:47 -0500 (EST)
- References: <epn9uv$cn3$1@smc.vnet.net>
Thanks a lot Andrzej for your reply! It is exactly the Option Extension of the Factor command that make me think that it should be more normal a similar setting of Apart command through a possible Option. So my question should have been stated "why there is not an Option like this?" Regards Dimitris Andrzej Kozlowski <akoz at mimuw.edu.pl> wrote: I am not sure if this answer will satisfy you but one way to put it is: for exactly the same reason why Factor requires you to specify the extension manually. In fact, if you use Apart with Factor and specify the correct extension you will get output equivalent to your Out[322]. If, in addition, you FullSimplify the individual terms you will get exactly Out[322]. In[50]:= FullSimplify /@ Apart[Factor[(x^2 + 2*x + 4)/(x^4 - 7*x^2 + 2*x + 17), Extension -> {Sqrt[-15 - 4*I], Sqrt[-15 + 4*I]}]] Out[50]= 1/(2*I*x - Sqrt[-15 - 4*I] + 1) + 1/(2*I*x + Sqrt[-15 - 4*I] + 1) - 1/(2*I*x + Sqrt[-15 + 4*I] - 1) + 1/(-2*I*x + Sqrt[-15 + 4*I] + 1) Andrzej Kozlowski Ï/Ç dimitris Ýãñáøå: > Dear All, > > In[317]:= > f[x_]:=(x^2+2*x+4)/(x^4-7*x^2+2*x+17) > > In[323]:= > Apart[f[x]] > > Out[323]= > (4 + 2*x + x^2)/(17 + 2*x - 7*x^2 + x^4) > > In[320]:= > Times@@Apply[#1[[1]] - #1[[2]] & , Solve[Denominator[f[x]] == 0, x], > 1] > Apart[(4 + 2*x + x^2)/%] > Map[FullSimplify, %, 1] > > Out[320]= > (I/2 - (1/2)*Sqrt[15 - 4*I] + x)*(-(I/2) - (1/2)*Sqrt[15 + 4*I] + > x)*((1/2)*(I + Sqrt[15 - 4*I]) + x)* > ((1/2)*(-I + Sqrt[15 + 4*I]) + x) > > Out[321]= > (4*I*((4 + 15*I) + (1 + 2*I)*Sqrt[15 - 4*I]))/(Sqrt[15 - 4*I]*(-2*I + > Sqrt[15 - 4*I] - Sqrt[15 + 4*I])* > (-2*I + Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(-I + Sqrt[15 - 4*I] - > 2*x)) - (4*I*((-4 - 15*I) + (1 + 2*I)*Sqrt[15 - 4*I]))/ > (Sqrt[15 - 4*I]*(2*I + Sqrt[15 - 4*I] - Sqrt[15 + 4*I])*(2*I + > Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(I + Sqrt[15 - 4*I] + 2*x)) - > (4*((15 + 4*I) + (2 + I)*Sqrt[15 + 4*I]))/(Sqrt[15 + 4*I]*(-2*I + > Sqrt[15 - 4*I] - Sqrt[15 + 4*I])* > (2*I + Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(-I - Sqrt[15 + 4*I] + > 2*x)) + (4*((-15 - 4*I) + (2 + I)*Sqrt[15 + 4*I]))/ > (Sqrt[15 + 4*I]*(-2*I - Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(-2*I + > Sqrt[15 - 4*I] + Sqrt[15 + 4*I])*(-I + Sqrt[15 + 4*I] + 2*x)) > > Out[322]= > 1/(1 + Sqrt[-15 + 4*I] - 2*I*x) + 1/(1 - Sqrt[-15 - 4*I] + 2*I*x) + 1/ > (1 + Sqrt[-15 - 4*I] + 2*I*x) - > 1/(-1 + Sqrt[-15 + 4*I] + 2*I*x) > > In[323]:= > Options[Apart] > > Out[323]= > {Modulus -> 0, Trig -> False} > > Why Apart cannot provide straightly the output Out[322]?