a bug in Integrate
- To: mathgroup at smc.vnet.net
- Subject: [mg78729] a bug in Integrate
- From: dimitris <dimmechan at yahoo.com>
- Date: Sun, 8 Jul 2007 06:04:50 -0400 (EDT)
(version 5.2; the bug exists also in version 6 as I was informed) In[1106]:= Integrate[Exp[-z]*ArcTan[Sin[z]/(1 + Cos[z])], {z, 0, Infinity}] Out[1106]= 1/2 However this is incorrect In[1112]:= NIntegrate[Exp[-z]*ArcTan[Sin[z]/(1 + Cos[z])], {z, 0, Pi, Infinity}, PrecisionGoal -> 6, WorkingPrecision -> 40, MaxRecursion -> 16, MinRecursion -> 12] Out[1112]= 0.363985435056665403`6.3687538868422156 The integral is evaluated by 1) taking the antiderivative 2) application of the NL formula In[1115]:= Developer`ClearCache[] In[1115]:= Unprotect[Limit]; Limit[a___] := Null /; (Print[InputForm[lim[a]]]; False) Evaluate again, now, the integral In[1116]:= Integrate[Exp[-z]*ArcTan[Sin[z]/(1 + Cos[z])], {z, 0, Infinity}] (*lengthy output is ommited*) The antiderivative has infinitely many jump discontinuities at Pi,3Pi,5Pi... In[1117]:= Integrate[Exp[-z]*ArcTan[Sin[z]/(1 + Cos[z])], z] Table[{n*Pi, (Limit[%, z -> n*Pi, Direction -> #1] & ) /@ {-1, 1}}, {n, 1, 5, 2}] Out[1117]= ((-(1/2))*(1 + 2*ArcTan[Tan[z/2]]))/E^z Out[1117]= {{Pi, {((1/2)*(-1 + Pi))/E^Pi, ((-(1/2))*(1 + Pi))/E^Pi}}, {3*Pi, {((1/2)*(-1 + Pi))/E^(3*Pi), ((-(1/2))*(1 + Pi))/E^(3*Pi)}}, {5*Pi, {((1/2)*(-1 + Pi))/E^(5*Pi), ((-(1/2))*(1 + Pi))/E^(5*Pi)}}} Mathematica's integrator misses these jump discontinuities unfortunately. In[1119]:= Clear[Limit] In[1119]:= Limit[((-(1/2))*(1 + 2*ArcTan[Tan[z/2]]))/E^z, z -> Infinity] - Limit[((-(1/2))*(1 + 2*ArcTan[Tan[z/2]]))/E^z, z -> 0] Out[1120]= 1/2 At this point I would like your (any!) comments on this issue. Next, wrap the integrand to TrigToExp. In[1121]:= Integrate[TrigToExp[Exp[-z]*ArcTan[Sin[z]/(1 + Cos[z])]], {z, 0, Infinity}] N[%] Out[1121]= (1/2)*(1 - Pi*Csch[Pi]) Out[1122]= 0.3639854725089334 Now Mathematica gets the integral correctly! Of course this is not the first time that I have encountered a case where TrigToExp "helps" Integrate but what remains mysterious is that even with TrigToExp the antiderivative has finite discontinuities at the same (infinite) points at the real axis In[1123]:= Integrate[TrigToExp[Exp[-z]*ArcTan[Sin[z]/(1 + Cos[z])]], z] Table[{n*Pi, (Limit[%, z -> n*Pi, Direction -> #1] & ) /@ {-1, 1}}, {n, 1, 5, 2}] Out[1123]= ((1/2)*I*(I - Log[1/(1 + E^(I*z))] + Log[E^(I*z)/(1 + E^(I*z))]))/E^z Out[1124]= {{Pi, {((1/2)*(-1 + Pi))/E^Pi, ((-(1/2))*(1 + Pi))/E^Pi}}, {3*Pi, {((1/2)*(-1 + Pi))/E^(3*Pi), ((-(1/2))*(1 + Pi))/E^(3*Pi)}}, {5*Pi, {((1/2)*(-1 + Pi))/E^(5*Pi), ((-(1/2))*(1 + Pi))/E^(5*Pi)}}} So, even with TrigToExp Mathematica detects the infinite many discontinuities or in this case the integral is evaluated with the convolution method. BTW, As David Cantrell and Vladimir Bondarenko noticed in another CAS, the returning antiderivative is a continuous function in the possitive real axis INT(EXP(-z)*ATAN(SIN(z)/(1+COS(z))),z,0,inf) (#e^(2*pi)-2*pi*#e^pi-1)/(2*(#e^(2*pi)-1)) 0.3639854725 INT(EXP(-z)*ATAN(SIN(z)/(1+COS(z))),z) -pi*#e^(-z)*FLOOR(1/2-z/(2*pi))+pi*#e^(2*pi*FLOOR (1/2-z/(2*pi))+pi)/(#e^(2*pi)-1)-#e^(-z)*(z+1)/2 Would it be possible for Mathematica to return a result like the above? Dimitris