Re: Re: limit
- To: mathgroup at smc.vnet.net
- Subject: [mg78730] Re: [mg78652] Re: limit
- From: DrMajorBob <drmajorbob at bigfoot.com>
- Date: Sun, 8 Jul 2007 06:05:21 -0400 (EDT)
- References: <f6d9si$2l5$1@smc.vnet.net> <14396775.1183711623875.JavaMail.root@m35> <op.tu2q58jfqu6oor@monster.ma.dl.cox.net> <30802604.1183786642129.JavaMail.root@m35>
- Reply-to: drmajorbob at bigfoot.com
Thanks!! Such things are not really my area of interest (to the extent I have one), but I like to learn something new every day. Bobby On Sat, 07 Jul 2007 00:29:44 -0500, Oleksandr Pavlyk <pavlyk at gmail.com> wrote: > Yes, my post got scrambled somehow. However, it does represent a proof . > The recurrence equation I was using is exactly derivable, I just did not > present the proof, so I will try to rectify the situation here. > > Let us start with the recurrence equation for a function > h[e, k, z] defined as follows: > > In[1]:= h[e_, k_, z_] := > HypergeometricPFQRegularized[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/ > 2, 1 + k, 1}, z] > > It satisfies the following recurrence equatio > > In[2]:= eq[e_, k_, z_] = -(-1 + z) h[e, k, z] + > 1/2 (-13 + (15 + 8 e) z + k (-6 + 8 z)) h[e, k + 1, z] + > 1/4 (86 + k^2 (12 - 24 z) - (139 + 114 e + 24 e^2) z - > 2 k (-32 + 3 (19 + 8 e) z)) h[e, k + 2, z] + > 1/8 (-252 + (779 + 800 e + 276 e^2 + 32 e^3) z + > 8 k^3 (-1 + 4 z) + 4 k^2 (-19 + 3 (23 + 8 e) z) + > 8 k (-30 + (100 + 69 e + 12 e^2) z)) h[e, k + 3, z] - > 1/8 (3 + e + k) (7 + 2 e + 2 k)^3 z h[e, k + 4, z]; > > Which can be directly verified as follows: > > In[3]:= Series[eq[e, k, z], {z, 0, 10}] // Simplify // FullSimplify > > Out[3]= (SeriesData[z, 0, {}, 11, 11, 1]) > > or derived by representing the h[e,k,z] as inifnite series in z > around the origin and doing manipulations term-wise. > > Because > > In[27]:= Limit[(z - 1) h[e, -1, z], z -> 1, Assumptions -> e > 0] > > Out[27]= 0 > > we consider > > In[4]:= RecEq = eq[e, -1, 1] > > Out[4]= ( > 4 e HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, > 1}, 1])/Sqrt[\[Pi]] + ((-65 - 114 e - 24 e^2 + > 2 (-32 + 3 (19 + 8 e))) HypergeometricPFQ[{1/2 - e, 1/2 - e, > 1/2 - e, 1 - e}, {1/2, 1, 2}, 1])/( > 4 Sqrt[\[Pi]]) + ((503 + 800 e + 276 e^2 + 32 e^3 - > 8 (70 + 69 e + 12 e^2) + > 4 (-19 + 3 (23 + 8 e))) HypergeometricPFQ[{1/2 - e, 1/2 - e, > 1/2 - e, 1 - e}, {1/2, 1, 3}, 1])/( > 16 Sqrt[\[Pi]]) - ((2 + e) (5 + 2 e)^3 HypergeometricPFQ[{1/2 - e, > 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 4}, 1])/(48 Sqrt[\[Pi]]) > > This is the recurrence equation I was using to get to the result: > > In[5]:= r[ > e_] = -2^(-1 - 4 e) Gamma[ > 1 - 2 e] Gamma[1/2 - e]^2 HypergeometricPFQ[{1/2 - e, 1/2 - e, > 1/2 - e, 1 - e}, {1/2, 1, 1}, 1] Sin[e Pi]/Pi; > > In[6]:= q[e_] = > r[e] /. First[ > Solve[RecEq == 0, > HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 1}, > 1]]] > > Out[6]= -(1/(e Sqrt[\[Pi]])) > 2^(-3 - 4 e) > Gamma[1 - 2 e] Gamma[ > 1/2 - e]^2 (-(((-65 - 114 e - 24 e^2 + > 2 (-32 + 3 (19 + 8 e))) HypergeometricPFQ[{1/2 - e, 1/2 - e, > 1/2 - e, 1 - e}, {1/2, 1, 2}, 1])/( > 4 Sqrt[\[Pi]])) - ((503 + 800 e + 276 e^2 + 32 e^3 - > 8 (70 + 69 e + 12 e^2) + > 4 (-19 + 3 (23 + 8 e))) HypergeometricPFQ[{1/2 - e, 1/2 - e, > 1/2 - e, 1 - e}, {1/2, 1, 3}, 1])/( > 16 Sqrt[\[Pi]]) + ((2 + e) (5 + 2 e)^3 HypergeometricPFQ[{1/2 - e, > 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 4}, 1])/( > 48 Sqrt[\[Pi]])) Sin[e \[Pi]] > > In[7]:= Collect[q[e], _HypergeometricPFQ, > Limit[#, e -> 0, Direction -> -1] &] /. e -> 0 > > Out[7]= -(1/8) > > Hope this derivation is clear and rigorous enough. > > Oleksandr Pavlyk > Special Functions Developer > Wolfram Research > > On 7/6/07, DrMajorBob <drmajorbob at bigfoot.com> wrote: >> I thought you could get from the first RecEq to the second one this way: >> >> 15/ >> 2 e HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, >> 1 - e}, {1/2, 1, >> 1}, 1] - >> 45/16 (3 + 14 e + 8 e^2) HypergeometricPFQ[{1/2 - e, 1/2 - e, >> 1/2 - e, 1 - e}, {1, 1, 3/2}, 1] + >> 5/16 (65 + 188 e + 132 e^2 + 32 e^3) HypergeometricPFQ[{1/2 - e, >> 1/2 - e, 1/2 - e, 1 - e}, {1, 1, 5/2}, 1] - >> 1/2 (2 + e)^3 (3 + 2 e) HypergeometricPFQ[{1/2 - e, 1/2 - e, >> 1/2 - e, 1 - e}, {1, 1, 7/2}, 1]; >> RecEq = Distribute[16/5 # &[%]] >> >> (snip) >> >> But no, that's not the same thing, even though the first term looks >> right. >> (No clue where the first came from; I assume Oleksandr was writing stuff >> at random and got lucky. The second doesn't follow from the first in any >> obvious (to me) way, so he got lucky twice!) >> >> The first RecEq is near-zero at s=1, like the second, but it doesn't >> work >> in the subsequent code for simplifying the OP's expression. Only the >> second recurrence relation has that nice property! >> >> Anyway, that's no more a symbolic proof than any of the others. It >> depends >> (AFAICT) on the numerical value of RecEq appearing to be zero, just like >> the OP's approximations tending toward -1/8. >> >> RecEq // FullSimplify >> >> 2/5 (192 e HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/2, >> 1, 1}, 1] - >> 36 (5 + 22 e + 8 e^2) HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, >> 1 - e}, {1/2, 1, 2}, 1] + >> 3 (143 + 4 e (86 + e (45 + 8 e))) HypergeometricPFQ[{1/2 - e, >> 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 3}, >> 1] - (2 + e) (5 + 2 e)^3 HypergeometricPFQ[{1/2 - e, 1/2 - e, >> 1/2 - e, 1 - e}, {1/2, 1, 4}, 1]) >> >> And don't forget... in addition to lacking a rule that makes this zero, >> Mathematica incorrectly simplified Daniel's denominator derivative. >> >> Bobby >> >> On Fri, 06 Jul 2007 02:23:16 -0500, sashap <pavlyk at gmail.com> wrote: >> >> > Hi, >> > >> > I actually found a way to symbolically prove the result. >> > One has to use different recurrence equation with respect >> > to lower integer parameter: >> > >> > In[189]:= Clear[q, r, RecEq]; >> > >> > In[190]:= >> > r[e_] = -2^(-1 - 4 e) Gamma[ >> > 1 - 2 e] Gamma[1/2 - e]^2 HypergeometricPFQ[{1/2 - e, 1/2 - e, >> > 1/2 - e, 1 - e}, {1/2, 1, 1}, 1] Sin[e Pi]/Pi; >> > >> > In[191]:= >> > RecEq = 15/ >> > 2 e HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/2,1, >> > 1}, 1] - >> > 45/16 (3 + 14 e + 8 e^2) HypergeometricPFQ[{1/2 - e, 1/2 - e, >> > 1/2 - e, 1 - e}, {1, 1, 3/2}, 1] + >> > 5/16 (65 + 188 e + 132 e^2 + 32 e^3) HypergeometricPFQ[{1/2 - e, >> > 1/2 - e, 1/2 - e, 1 - e}, {1, 1, 5/2}, 1] - >> > 1/2 (2 + e)^3 (3 + 2 e) HypergeometricPFQ[{1/2 - e, 1/2 - e, >> > 1/2 - e, 1 - e}, {1, 1, 7/2}, 1]; >> > >> > In[192]:= >> > RecEq = 24 e HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/ >> > 2, 1, 1}, 1] + >> > 1/4 (-90 - 396 e - 144 e^2) HypergeometricPFQ[{1/2 - e, 1/2 - e, >> > 1/2 - e, 1 - e}, {1/2, 1, 2}, 1] + >> > 1/8 (429 + 1032 e + 540 e^2 + 96 e^3) HypergeometricPFQ[{1/2 - e, >> > 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 3}, 1] - >> > 1/8 (2 + e) (5 + 2 e)^3 HypergeometricPFQ[{1/2 - e, 1/2 - e, >> > 1/2 - e, 1 - e}, {1/2, 1, 4}, 1]; >> > >> > In[193]:= RecEq /. e -> 1`15*^-5 >> > >> > Out[193]= 0.*10^-15 >> > >> > In[194]:= >> > q[e_] = r[e] /. >> > First[Solve[RecEq == 0, >> > HypergeometricPFQ[{1/2 - e, 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 1}, >> > 1]]] >> > >> > Out[194]= -(1/(3 e \[Pi])) >> > 2^(-4 - 4 e) >> > Gamma[1 - 2 e] Gamma[ >> > 1/2 - e]^2 (-(1/ >> > 4) (-90 - 396 e - 144 e^2) HypergeometricPFQ[{1/2 - e, 1/2 - e, >> > 1/2 - e, 1 - e}, {1/2, 1, 2}, 1] - >> > 1/8 (429 + 1032 e + 540 e^2 + 96 e^3) HypergeometricPFQ[{1/2 - e, >> > 1/2 - e, 1/2 - e, 1 - e}, {1/2, 1, 3}, 1] + >> > 1/8 (2 + e) (5 + 2 e)^3 HypergeometricPFQ[{1/2 - e, 1/2 - e, >> > 1/2 - e, 1 - e}, {1/2, 1, 4}, 1]) Sin[e \[Pi]] >> > >> > In[195]:= >> > Collect[q[e], _HypergeometricPFQ, >> > Limit[#, e -> 0, Direction -> -1] &] /. e -> 0 >> > >> > Out[195]= -(1/8) >> > >> > Oleksandr Pavlyk >> > Special Functions Developer >> > Wolfram Research Inc. >> > >> > On Jul 5, 3:34 am, DrMajorBob <drmajor... at bigfoot.com> wrote: >> >> That seems plausible, of course, but numerical results contradict it, >> >> both >> >> for the original expression and the denominator derivative. >> >> >> >> Start by taking apart the OP's expression: >> >> >> >> Clear[expr, noProblem, zero, infinite] >> >> expr[s_] = -((2^(-2 + s)*Cos[(1/4)*Pi*(1 + s)]*Gamma[(1 + s)/4]^2* >> >> Gamma[(1 + >> >> s)/2]* >> >> HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, >> >> 3/4 + s/4}, >> >> {1/2, 1, 1}, 1])/Pi); >> >> List @@ % /. s -> 1 >> >> >> >> {-1, 1/2, 1/\[Pi], 0, \[Pi], 1, \[Infinity]} >> >> >> >> noProblem[s_] = expr[s][[{1, 2, 3, 5, 6}]] >> >> zero[s_] = expr[s][[4]] >> >> infinite[s_] = expr[s][[-1]] >> >> >> >> -(2^(-2 + s) Gamma[(1 + s)/4]^2 Gamma[(1 + s)/2])/\[Pi] >> >> >> >> Cos[1/4 \[Pi] (1 + s)] >> >> >> >> HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, 3/4 + s/4}, {1/2, >> >> 1, 1}, 1] >> >> >> >> Here's essentially the same result you have: >> >> >> >> D[zero[s], s] /. s -> 1 >> >> D[1/infinite[s], s] /. s -> 1 >> >> >> >> -\[Pi]/4 >> >> 0 >> >> >> >> But the latter derivative is clearly wrong (probably due to some >> >> simplification rule, applied without our knowledge, that isn't >> correct >> >> at >> >> s=1): >> >> >> >> Clear[dy, infInverse] >> >> dy[f_, dx_, digits_] := N[(f[1 - dx] - f[1 - 2 dx])/dx, digits] >> >> infInverse[s_] = 1/infinite[s]; >> >> >> >> Table[dy[infInverse, 10^-k, 25], {k, 1, 10}] >> >> >> >> {-1.923427116516395532881478, -2.983463609047004067632190, \ >> >> -3.125313973445201143419500, -3.139959997528752908922902, \ >> >> -3.141429339969442289280062, -3.141576321747481534963308, \ >> >> -3.141591020400759167851555, -3.141592490270841802264744, \ >> >> -3.141592637257897614551351, -3.141592651956603671268599} >> >> >> >> Table[Pi + dy[infInverse, 10^-k, 30], {k, 10, 20}] >> >> >> >> {1.63318956719404435692*10^-9, 1.6331895676743358738*10^-10, >> >> 1.633189567722365025*10^-11, 1.63318956772716794*10^-12, >> >> 1.6331895677276482*10^-13, 1.633189567727696*10^-14, >> >> 1.63318956772770*10^-15, 1.6331895677277*10^-16, >> >> 1.633189567728*10^-17, 1.63318956773*10^-18, 1.6331895677*10^-19} >> >> >> >> So the denominator limit is (almost certainly) -Pi, and the original >> >> limit >> >> is >> >> >> >> noProblem[1] D[zero[s], s]/-Pi /. s -> 1 >> >> % // N >> >> >> >> -1/8 >> >> -0.125 >> >> >> >> which agrees perfectly with the OP's calculations and with these: >> >> >> >> Table[N[1/8 + expr[1 - 10^-k], 20], {k, 1, 10}] >> >> >> >> {-0.031802368727291105600, -0.0029147499047748859136, \ >> >> -0.00028902994360074334672, -0.000028878738171604118632, \ >> >> -2.8876314481087565099*10^-6, -2.8876072131304841863*10^-7, \ >> >> -2.8876047896519244498*10^-8, -2.8876045473042611497*10^-9, \ >> >> -2.8876045230694967464*10^-10, -2.8876045206460203254*10^-11} >> >> >> >> I don't know how to prove the result symbolically, however. >> >> >> >> Bobby >> >> >> >> On Wed, 04 Jul 2007 04:28:36 -0500, dh <d... at metrohm.ch> wrote >> >> >> >> >> >> >> >> >> >> >> >> > Hi Dimitris, >> >> >> >> > I think the limit is -Infinity. >> >> >> >> > consider the following trick : >> >> >> >> > f1=2^(-2+s)*Cos[(1/4)*Pi*(1+s)]*Gamma[(1+s)/4]^2*Gamma[(1+s)/2] >> >> >> >> > f2= 1/HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, 3/4 >> + s/4}, >> >> >> >> > {1/2, 1, 1}, 1] >> >> >> >> > then we are interessted in the limit of f1/f2. As both these >> >> expressions >> >> >> >> > are 0 for s=1, we can take the quotient of the drivatives: >> >> >> >> > D[f1,s]=-\[Pi]^2/8 >> >> >> >> > D[f2,s]= 0 >> >> >> >> > therefore we get -Infinity >> >> >> >> > hope this helps, Daniel >> >> >> >> > dimitris wrote: >> >> >> >> >> Hello. >> >> >> >> >> Say >> >> >> >> >> In[88]:= >> >> >> >> >> o = -((2^(-2 + s)*Cos[(1/4)*Pi*(1 + s)]*Gamma[(1 >> + s)/4]^2*Gamma[(1 + >> >> >> >> >> s)/2]* >> >> >> >> >> HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, 3/4 >> + s/4}, >> >> >> >> >> {1/2, 1, 1}, 1])/Pi); >> >> >> > >> > >> >> >> I am interested in the value at (or as s->) 1. >> >> >> >> >> I think there must exist this value (or limit) at s=1. >> >> >> >> >> In[89]:= >> >> >> >> >> (N[#1, 20] & )[(o /. s -> 1 - #1 & ) /@ Table[10^(-n), {n, 3, >> 10}]] >> >> >> >> >> Out[89]= >> >> >> >> >> >> >> >> {-0.12528902994360074335,-0.12502887873817160412,-0.12500288763144810876,-0.\ >> >> >> >> >> >> >> 12500028876072131305,-0.12500002887604789652,-0.12500000288760454730, >> >> -0.\ >> >> >> >> >> 12500000028876045231,-0.12500000002887604521} >> >> >> >> >> However both >> >> >> >> >> o/.s->1 >> >> >> >> >> and >> >> >> >> >> Limit[o,s->1,Direction->1 (*or -1*)] >> >> >> >> >> does not produce anything. >> >> >> >> >> Note also that >> >> >> >> >> In[93]:= >> >> >> >> >> 2^(-2 + s)*Cos[(1/4)*Pi*(1 + s)]*Gamma[(1 + s)/4]^2*Gamma[(1 + s)/ >> >> >> >> >> 2] /. s -> 1 >> >> >> >> >> HypergeometricPFQ[{1/4 + s/4, 1/4 + s/4, 1/4 + s/4, 3/4 + s/4}, >> {1/2, >> >> >> >> >> 1, 1}, 1] /. s -> 1 >> >> >> >> >> Out[93]= >> >> >> >> >> 0 >> >> >> >> >> Out[94]= >> >> >> >> >> Infinity >> >> >> >> >> So am I right and the limit exist (if yes please show me a way to >> >> >> >> >> evaluate it) or not >> >> >> >> >> (in this case explain me why; in either case be kind if I miss >> >> >> >> >> something fundamental!) >> >> >> >> >> Thanks >> >> >> >> >> Dimitris >> >> >> >> -- >> >> >> >> DrMajor... at bigfoot.com >> > >> > >> > >> > >> >> >> >> -- >> DrMajorBob at bigfoot.com >> > -- DrMajorBob at bigfoot.com