MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: how to simplify n write in mathtype

  • To: mathgroup at smc.vnet.net
  • Subject: [mg78787] Re: how to simplify n write in mathtype
  • From: dimitris <dimmechan at yahoo.com>
  • Date: Mon, 9 Jul 2007 01:44:06 -0400 (EDT)
  • References: <f6qegv$a6r$1@smc.vnet.net>

            bhargavi       :
> hi,
> i have very huge expression nearly 7papers,i could't do full
> simplify.i tried simplify command.then to no use.i want to converrt
> that expression to math type.pla any one can suggest me idea.n i can't
> make up the brackets where does it start n end.
> thanking you
> bhargavi.
> my expression is:
> \!\(=CE=BB/\((=CF=83\_1 - \((\(-420\)\
>         Da\ \((\((240\ Da\^\(7/
>                   2\)\ \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\))\)\^3\ \((1 + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\=
> @Da\))\)\ =CF=B5
> \ =CE=B7 + \
> \((\(-1\) + =CE=B3)\)\^5\ =CE=B3\ \((\(-2\)\ \[ExponentialE]\^\(\(=CE=B3\ \=
> @=CF=B5\)\/\@Da
> \)\ \((\
> \(-1\) + =CE=B3)\) + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ =
> =CE=B3\ \((\(-1\)
> +
>                               =CE=B2\ \@=CF=B5)\) - =CE=B3\ \((1 + =CE=B2\ =
> \@=CF=B5)\))\)\ \((\
> (-1\) + \
> \[ExponentialE]\^\(\(2\
>                               =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=
> =B2\ \@=CF=B5)\)
> - =CE=B2\ \
> \@=CF=B5)\)\ =CF=B5\^\(3/2\)\ =CE=B7 - 96\ Da\^3\ \((\(-1\) + \[Exponential=
> E]\^\(\(=CE=B3\
> \
> \@=CF=B5\)\/\@Da\))\)\^2\ \@=CF=B5\ \((\((3 + 4\ \[ExponentialE]\^\(\(=CE=
> =B3\ \@=CF=B5\)\/
> \@Da\) \
> + 3\ \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=
> =B3)\)\ =CE=B7
> -
>                                     5\ \((\(-1\) + \[ExponentialE]\^\
> (\(2\ =CE=B3\ \
> \@=CF=B5\)\/\@Da\))\)\ =CE=B2\ \((\(-1\) +
>                                 =CE=B3)\)\ \@=CF=B5\ =CE=B7 + =CF=B5\ \((\(=
> -1\) + =CE=B3 + =CE=B3\ =CE=B7
> + \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) +
>                                         =CE=B3 + =CE=B3\ =CE=B7)\) + \[Expo=
> nentialE]\^
> \(\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\)\ \((2 + =CE=B3\ \((\(-2\) + 3\ =CE=B7)\))\))\))\) +
>                           2\ Da\^\(3/2\)\ \((\(-1\) + \[ExponentialE]\^
> \(\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\)\ =CF=B5\ \((14 - 18\ =CE=B3 -
>                                 6\ =CE=B3\^2 + 10\ =CE=B3\^3 + 28\
>                                   =CE=B2\ \@=CF=B5 - 12\ =CE=B2\ =CE=B3\ \@=
> =CF=B5 - 60\ =CE=B2\ =CE=B3
> \^2\ \@=CF=B5 + \
> 44\ =CE=B2\ =CE=B3\^3\ \@=CF=B5 + 2\ =CF=B5 - 20\ =CE=B3\ =CF=B5 + 48\ =CE=
> =B2\^2\ =CE=B3\ =CF=B5 + 10\ =CE=B3\^2\ =CF=B5 -
>                                 96\ =CE=B2\^2\ =CE=B3\^2\ =CF=B5 + 8\ =CE=
> =B3\^3\ =CF=B5 + 48\ =CE=B2
> \^2\
>                                 =CE=B3\^3\ =CF=B5 - 24\ =CE=B2\ =CE=B3\^2\ =
> =CF=B5\^\(3/2\) +
>                                 24\ =CE=B2\ =CE=B3\^3\ =CF=B5\^\(3/2\) + 7\=
>  =CE=B7 -
>                                 51\ =CE=B3\ =CE=B7 + 87\ =CE=B3\^2\ =CE=B7 =
> - 43\
>                                 =CE=B3\^3\ =CE=B7 - 30\ =CE=B2\ =CE=B3\ \@=
> =CF=B5\ =CE=B7 + 66\ =CE=B2\
>                                 =CE=B3\^2\ \@=CF=B5\ =CE=B7 - 36\ =CE=B2\ =
> =CE=B3\^3\ \@=CF=B5\ =CE=B7 -
> 4\ =CE=B3\ =CF=B5\ \
> =CE=B7 + 14\ =CE=B3\^2\ =CF=B5\ =CE=B7 - 14\
>                                   =CE=B3\^3\ =CF=B5\ =CE=B7 - 4\ =CE=B2\ =
> =CE=B3\^3\ =CF=B5\^\(3/2\)\
> =CE=B7 + \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-14\) + 84\ =CE=B2=
> \ \@=CF=B5 - 2\
> =CF=B5 +
>                                 11\ =CE=B7 + =CE=B3\^2\ \((\(-90\) + 96\ =
> =CE=B2\^2\ =CF=B5
> + 6\ =CE=B2\
> \ \@=CF=B5\ \((34 + 4\ =CF=B5 - 11\ =CE=B7)\) + 171\ =CE=B7 - 2\ =CF=B5\ \(=
> (29 + =CE=B7)\))\) + =CE=B3\ \
> ((
>                                 66 - 48\ =CE=B2\^2\ =CF=B5 - 99\ =CE=B7 + 4=
> \ =CF=B5\ \((5
> +
>                                 =CE=B7)\) + 6\ =CE=B2\ \@=CF=B5\ \((\(-38\)=
>  + 5\ =CE=B7)\))
> \) +
>                                 =CE=B3\^3\ \((38 - 48\ =CE=B2\^2\ =CF=B5 + =
> =CF=B5\ \((40 -
> 6\ \
> =CE=B7)\) - 83\ =CE=B7 + 4\
>                                 =CE=B2\ \@=CF=B5\ \((\(-15\) + =CF=B5\ \((\=
> (-6\) + =CE=B7)
> \) + 9\ \
> =CE=B7)\))\))\) - \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\)\ \((14 + =
> 84\ =CE=B2\ \@=CF=B5
> + 2\ =CF=B5 \
> - 11\ =CE=B7 + =CE=B3\^2\ \((90 - 96\ =CE=B2\^2\ =CF=B5 + 6\
>                                       =CE=B2\ \@=CF=B5\ \((34 + 4\
>                                         =CF=B5 - 11\
>                                         =CE=B7)\) - 171\ =CE=B7 + 2\ =CF=B5=
> \ \((29 +
> =CE=B7)\))\) \
> + =CE=B3\ \((\(-66\) + 48\ =CE=B2\^2\ =CF=B5 + 99\
>                                         =CE=B7 - 4\ =CF=B5\ \((5 + =CE=B7)\=
> ) + 6\ =CE=B2\
> \@=CF=B5\ \
> \((\(-38\) + 5\ =CE=B7)\))\) + =CE=B3\^3\ \((\(-38\) + 48\ =CE=B2\^2\ =CF=
> =B5 + 83\
>                                         =CE=B7 + =CF=B5\ \((\(-40\) + 6\ =
> =CE=B7)\) +
> 4\
>                                         =CE=B2\ \@=CF=B5\ \((\(-15\) + =CF=
> =B5\ \((\
> (-6\) +
>                                         =CE=B7)\) + 9\ =CE=B7)\))\))\) + \
> \[ExponentialE]\^\(\(3\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((14 - 28\ =CE=B2\ \@=
> =CF=B5 + 2\ =CF=B5 +
>                                         7\ =CE=B7 + =CE=B3\ \((\(-18\) + 48=
> \ =CE=B2
> \^2\ =CF=B5 - \
> 51\ =CE=B7 - 4\ =CF=B5\ \((5 + =CE=B7)\) + 6\ =CE=B2\ \@=CF=B5\ \((2 + 5\ =
> =CE=B7)\))\) + =CE=B3\^2\ \((\
> (-6\) -
>                                         96\ =CE=B2\^2\ =CF=B5 +
>                                 6\ =CE=B2\ \@=CF=B5\ \((10 + 4\ =CF=B5 - 11=
> \ =CE=B7)\) +
> 87\ =CE=B7 + \
> 2\ =CF=B5\ \((5 + 7\ =CE=B7)\))\) + =CE=B3\^3\ \((10 + 48\
>                                     =CE=B2\^2\ =CF=B5 +
>                                       =CF=B5\ \((8 - 14\ =CE=B7)\) - 43\ =
> =CE=B7 + 4\ =CE=B2
> \ \@=CF=B5\ \
> \((\(-11\) + =CF=B5\ \((\(-6\) +
>                                         =CE=B7)\) + 9\ =CE=B7)\))\))\))\) +=
>  2\ Da
> \ \
> \((\(-1\) + =CE=B3)\)\^2\ \@=CF=B5\ \((\((\(-1\) + \[ExponentialE]\^\(\(=CE=
> =B3\ \
> \@=CF=B5\)\/\@Da\))\)\^2\ \((1 + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)=
> \/\@Da\))\)
> \ \
> \((\(-1\) + =CE=B3)\)\^3\
>                                         =CE=B7 - \((\(-1\) + \
> \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\^3\ \((1 + \[Exponential=
> E]\^\
> (\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\))\)\
>                                       =CE=B2\ \((\(-1\) + =CE=B3)\)\^3\ \@=
> =CF=B5\ =CE=B7 +
> \
> \((\(-1\) + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\))\)\^2\ =CE=
> =B3\ =CF=B5\^2\ \
> ((1 + 2\
> \ =CE=B3\ \((\(-1\) + 6\ =CE=B2\^2 - =CE=B7)\) + =CE=B3\^2\ \((1 + 2\ =CE=
> =B2\^2\ \((\(-6\) + =CE=B7)
> \) + 2\ \
> =CE=B7)\))\) - \((\(-1\) + \[ExponentialE]\^\(\(2\
>                                 =CE=B3\ \@=CF=B5\)\/\@Da\))\)\ =CE=B2\
>                                       =CF=B5\^\(3/2\)\ \((\(-2\) + 20\ =CE=
> =B3 -
> 10\ \
> =CE=B3\^2 - 8\ =CE=B3\^3 + 5\ =CE=B3\ =CE=B7 - 16\ =CE=B3\^2\ =CE=B7 + 15\ =
> =CE=B3\^3\
>                                     =CE=B7 - 2\ \[ExponentialE]\^\(\(=CE=B3=
> \ \
> \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B3)\)\^2\ \((\(-2\) + =CE=B3\ \((16 + 5=
> \ =CE=B7)\))\)
> + \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-2\) + 5\ =CE=B3\ =
> \((
>                                       4 + =CE=B7)\) - 2\ =CE=B3\^2\ \((5 +
>                                       8\ =CE=B7)\) + =CE=B3\^3\ \((\(-8\) +=
>  15\
> \
> =CE=B7)\))\))\) + =CF=B5\ \((3 + 5\ =CE=B3 - 7\ =CE=B3\^2 - =CE=B3\^3 - 2\ =
> =CE=B7 + 11\ =CE=B3\ =CE=B7 - 22\ =CE=B3
> \^2\ =CE=B7 \
> + 15\ =CE=B3\^3\ =CE=B7 + 2\ \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\=
> )\ \((\(-1\) +
> =CE=B3)\)\^2\
> \ \((\(-8\) + =CE=B3\ \((\(-6\) + 5\ =CE=B7)\))\) + 2\ \[ExponentialE]\^\(\=
> (3\ =CE=B3
> \ \@=CF=B5\)\
> \/\@Da\)\ \((\(-1\) + =CE=B3)\)\^2\ \((\(-8\) +
>                                     =CE=B3\ \((\(-6\) + 5\
>                                       =CE=B7)\))\) + 2\ \[ExponentialE]\^\
> (\(2\ =CE=B3\ \
> \@=CF=B5\)\/\@Da\)\ \((13 + =CE=B3\^2\ \((23 - 6\ =CE=B7)\) + 2\ =CE=B7 - =
> =CE=B3\ \((25 + 3\ =CE=B7)
> \) + \
> =CE=B3\^3\ \((\(-11\) + 9\ =CE=B7)\))\) + \[ExponentialE]\^\(\(4\
>                                       =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((3 - 2\=
>  =CE=B7 + =CE=B3
> \ \((5 \
> + 11\ =CE=B7)\) + =CE=B3\^3\ \((\(-1\) + 15\ =CE=B7)\) - =CE=B3\^2\ \((
>                                     7 + 22\ =CE=B7)\))\))\))\) + 48\
>                                         Da\^\(5/2\)\ \((\(-1\) + \
> \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\)\ =
> \((2\ \((\
> (-1\) + \
> \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\^2\ \((1 + \[Exponential=
> E]\^\
> (\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\))\)\ =CE=B3\ =CF=B5\^2 + \((1 + 4\ \[ExponentialE]\^\(\(=
> =CE=B3\ \@=CF=B5\)\/
> \@Da\) + \
> 4\ \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\) + \[ExponentialE]\^\(=
> \(3\ =CE=B3
> \ \
> \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\)\ =CE=B7 - 2\ \((\(-3\) - \[Exp=
> onentialE]
> \^\(\(=CE=B3\
> \ \@=CF=B5\)\/\@Da\) + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\) +=
>  3\ \
> \[ExponentialE]\^\(\(3\ =CE=B3\ \@=CF=B5\)\/\@Da\))\)\ =CE=B2\ \((\(-1\) + =
> =CE=B3)\)\ \@=CF=B5\
> =CE=B7 - 4\ \
> \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\ =CE=B2\ =CF=
> =B5\^\(3/2\)\ \
> \((\(-1\) + =CE=B3 + =CE=B3\ =CE=B7 + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=
> =B5\)\/\@Da\)\ \((\
> (-1\) +
>                                         =CE=B3 + =CE=B3\ =CE=B7)\) + \[Expo=
> nentialE]\^
> \(\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\)\ \((2 + =CE=B3\ \((\(-2\) + 3\ =CE=B7)\))\))\) + \((
>                                     1 + \[ExponentialE]\^\(\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\))\)\ =CF=B5\ \((\(-2\) + 2\ =CE=B3 +
>                                       2\ =CE=B7 - 5\ =CE=B2\^2\ =CE=B7 + 5\=
>  =CE=B2\^2\ =CE=B3\
> =CE=B7 + \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-2\) + \((2 - 5\ =
> =CE=B2\^2)\)
> \ =CE=B7 + \
> =CE=B3\ \((2 + 5\ =CE=B2\^2\ =CE=B7)\))\) - 2\ \[ExponentialE]\^\(\(=CE=B3\=
>  \@=CF=B5\)\/\@Da\)\
> \
> \((\(-2\) + \((2 -
>                                         5\ =CE=B2\^2)\)\ =CE=B7 + =CE=B3\ \=
> ((
>                                         2 + 5\ \((\(-1\) + =CE=B2\^2)\)\ \
> =CE=B7)\))\))\))\) + \@Da\ \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=
> =B5\)\/\@Da
> \))\)\ \
> \((\(-1\) + =CE=B3)\)\^4\ =CF=B5\ \((\(-\((
>                                   1 + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5=
> \)\/
> \@Da\) + \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\) + \[ExponentialE]\^\(\(3=
> \ =CE=B3\
> \@=CF=B5\)\/\
> \@Da\))\)\)\ \((1 - 4\ =CE=B3 + 3\
>                               =CE=B3\^2)\)\
>                                       =CE=B7 + \((\(-1\) + \[ExponentialE]\^
> \(\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\))\)\ =CE=B2\ \((\(-1\) + =CE=B3)\)\ \((\(-1\) +
>                                         5\ =CE=B3 + \[ExponentialE]\^\(\(2\
> =CE=B3\ \@=CF=B5\
> \)\/\@Da\)\ \((\(-1\) + 5\ =CE=B3)\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=
> =B5\)\/\@Da\)
> \ \
> \((\(-2\) + 6\ =CE=B3)\))\)\ \@=CF=B5\ =CE=B7 + \((\(-1\) + \[ExponentialE]=
> \^\(\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\))\)\ \((1 + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da=
> \))\)\^2\ =CE=B2
> \ =CE=B3\ =CF=B5\
> \^\(3/2\)\ \((\(-2\) + =CE=B3\ \((2 + 5\ =CE=B7)\))\) - \((1 + \[Exponentia=
> lE]\^\
> (\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\))\)\ =CF=B5\ \((\(-1\) + =CE=B3\^2 - 2\ =CE=B2\^2\ =CE=B3\
>                                     =CE=B7 + 5\ =CE=B3\^2\ =CE=B7 + 2\ =CE=
> =B2\^2\
>                                       =CE=B3\^2\ =CE=B7 - 2\ \[ExponentialE=
> ]\^\(\
> (=CE=B3\ \
> \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B3)\)\ \((1 + =CE=B3\ \((\(-1\) + 2\ \(=
> (\(-2\) + =CE=B2
> \^2)\)\
> \ =CE=B7)\))\) + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-=
> 1\) - 2\ =CE=B2
> \^2\ =CE=B3\ \
> =CE=B7 + =CE=B3\^2\ \((1 + \((5 + 2\ =CE=B2\^2)\)\ =CE=B7)\))\))\))\) + 4\ =
> Da\^2\ \@=CF=B5\ \
> ((6 - 18\
>                                         =CE=B3 + 18\ =CE=B3\^2 -
>                           6\ =CE=B3\^3 + 24\ =CE=B2\ \@=CF=B5 - 72\ =CE=B2\=
>  =CE=B3\ \@=CF=B5 +
>                               72\ =CE=B2\ =CE=B3\^2\ \@=CF=B5 - 24\ =CE=B2\
>                                 =CE=B3\^3\ \@=CF=B5 - 14\ =CF=B5 + 24\ =CE=
> =B2\^2\ =CF=B5 + 6\ =CE=B3
> \ =CF=B5 - \
> 72\ =CE=B2\^2\ =CE=B3\ =CF=B5 + 30\ =CE=B3\^2\ =CF=B5 + 72\ =CE=B2\^2\ =CE=
> =B3\^2\ =CF=B5 -
>                                 22\ =CE=B3\^3\ =CF=B5 - 24\ =CE=B2\^2\ =CE=
> =B3\^3\ =CF=B5 - 48\ =CE=B2
> \ =CE=B3\
>                                   =CF=B5\^\(3/2\) + 96\ =CE=B2\ =CE=B3\^2\ =
> =CF=B5\^\(3/
>                                 2\) - 48\ =CE=B2\ =CE=B3\^3\ =CF=B5\^\(3/2\=
> ) + 6\ =CE=B3
> \^2\ =CF=B5\^2 \
> - 6\ =CE=B3\^3\ =CF=B5\^2 - 27\ =CE=B7 + 81\ =CE=B3\ =CE=B7 - 81\ =CE=B3\^2=
> \ =CE=B7 + 27\ =CE=B3\^3\ =CE=B7 - 24\ =CE=B2
> \ \@=CF=B5\
>                                         =CE=B7 + 48\ =CE=B2\ =CE=B3\ \@=CF=
> =B5\ =CE=B7 -
>                                         24\ =CE=B2\ =CE=B3\^2\ \@=CF=B5\ =
> =CE=B7 + 15\ =CE=B3\ =CF=B5
> \ =CE=B7 -
>                                         24\ =CE=B2\^2\ =CE=B3\ =CF=B5\ =CE=
> =B7 -
>                                         33\ =CE=B3\^2\ =CF=B5\ =CE=B7 + 48\=
>  =CE=B2\^2\
>                                         =CE=B3\^2\ =CF=B5\ =CE=B7 + 18\ =CE=
> =B3\^3\ =CF=B5\ =CE=B7 -
> 24\
>                                       =CE=B2\^2\ =CE=B3\^3\ =CF=B5\ =CE=B7 +
>                                         =CE=B3\^3\
>                                         =CF=B5\^2\ =CE=B7 + 4\ \[Exponentia=
> lE]\^\
> (\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B3)\)\^2\ \((\(-2\)\ \((\(-7\) +
>                                 =CE=B3)\)\ =CF=B5 - 6\ =CE=B2\^2\ =CF=B5\ \=
> ((4 + =CE=B3\ \((\
> (-4\) + \
> =CE=B7)\))\) + 6\ =CE=B2\ \@=CF=B5\ \((=CE=B3\ \((2 + 4\
>                                 =CF=B5 - 5\ =CE=B7)\) + 2\ \((\(-1\) + =CE=
> =B7)\))\) +
> 3\ \
> \((2 - 5\ =CE=B3)\)\ =CE=B7)\) - 4\ \[ExponentialE]\^\(\(3\ =CE=B3\ \@=CF=
> =B5\)\/\@Da\)\ \
> ((\(-1\) \
> + =CE=B3)\)\^2\ \((2\ \((\(-7\) + =CE=B3)\)\ =CF=B5 + 6\ =CE=B2\^2\ =CF=B5\=
>  \((4 + =CE=B3\ \((\(-4\)
> + \
> =CE=B7)\))\) + 6\ =CE=B2\ \@=CF=B5\ \((=CE=B3\ \((2 + 4\ =CF=B5 - 5\ =CE=B7=
> )\) +
>                                         2\ \((\(-1\) + =CE=B7)\))\) +
>                                         3\ \((\(-2\) + 5\ =CE=B3)\)\ =CE=B7=
> )\) +
> \
> \[ExponentialE]\^\(\(4\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((6 - 14\ =CF=B5 + 24\
>                                 =CE=B2\^2\ =CF=B5 + 24\ =CE=B2\ \@=CF=B5\ \=
> ((\(-1\) +
> =CE=B7)\) - 27\ =CE=B7 + 3\ =CE=B3\^2\ \((6 + 2\ =CF=B5\^2 + =CF=B5\ \((10 =
> - 11\
>                                     =CE=B7)\) - 8\ =CE=B2\ \@=CF=B5\ \((3 +=
>  4\
>                                       =CF=B5 - =CE=B7)\) - 27\ =CE=B7 + 8\ =
> =CE=B2\^2\
>                                       =CF=B5\ \((3 + 2\ =CE=B7)\))\) - 3\ =
> =CE=B3\ \((
>                                 6 - 8\ =CE=B2\ \@=CF=B5\ \((3 + 2\ =CF=B5 -=
>  2\ =CE=B7)\) -
> 27\
>                                     =CE=B7 + 8\ =CE=B2\^2\ =CF=B5\ \((3 +
>                                         =CE=B7)\) -
>                                         =CF=B5\ \((2 + 5\ =CE=B7)\))\) + =
> =CE=B3\^3\ \
> \((\(-6\) + 24\ =CE=B2\ \@=CF=B5\ \((1 + 2\ =CF=B5)\) + =CF=B5\^2\ \((\(-6\=
> ) + =CE=B7)\) +
>                                         27\ =CE=B7 - 24\ =CE=B2\^2\ =CF=B5\=
>  \((1 + =CE=B7)
> \) + 2\
>                                         =CF=B5\ \((\(-11\) +
>                                         9\ =CE=B7)\))\))\) - 2\ \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((
>                                       6 + \((42 - 72\
>                                         =CE=B2\^2)\)\ =CF=B5 - 3\ =CE=B7 - =
> 3\ =CE=B3\ \((6
> - 11\
>                                         =CE=B7 + =CF=B5\ \((38 - 5\ =CE=B7 +
>                                         8\ =CE=B2\^2\ \((\(-9\) + 2\ =CE=B7=
> )\))
> \))\) +
>                                         =CE=B3\^3\ \((\(-6\) + =CF=B5\^2\ \=
> ((\
> (-6\) + \
> =CE=B7)\) + 27\ =CE=B7 - 6\ =CF=B5\ \((5 - 3\ =CE=B7 + 4\ =CE=B2\^2\ \((\(-=
> 3\) + 2\
>                                       =CE=B7)\))\))\) + 3\ =CE=B3\^2\ \((6 =
> + 2\ =CF=B5
> \^2 -
>                                         19\ =CE=B7 + =CF=B5\ \((34 - 11\ =
> =CE=B7 +
>                                         8\ =CE=B2\^2\ \((\(-9\) + 4\
>                                         =CE=B7)\))\))\))\))\))\)\
>                                         =CE=BB - 2\ \@=CF=B5\ \((96\
>                                         Da\^3\ \((\(-1\) + \
> \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\^4\ =CF=B5 - \((\(-1\) +
>                                         =CE=B3)\)\^5\ \((\(-1\) -
>                                 2\ \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\=
> /\@Da
> \)\ \((\
> \(-1\) + =CE=B3)\) + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \(=
> (\(-1\) + =CE=B3
> \ \
> \((\(-1\) + 2\ =CE=B2\ \@=CF=B5)\))\) - =CE=B3\ \((1 + 2\ =CE=B2\ \@=CF=B5)=
> \))\)\ \((\(-1\) + \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) +
>                                         =CE=B2\ \@=CF=B5)\) - =CE=B2\ \@=CF=
> =B5)\)\
>                                         =CF=B5 - 96\ Da\^\(5/2\)\ \((\(-1\)
> + \
> \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\^3\ \@=CF=B5\ \((\(-1\) =
> - 2\ =CE=B2\
> \@=CF=B5 +
>                                   =CE=B3\ \((
>                                 1 + 2\ =CE=B2\ \@=CF=B5 + =CF=B5)\) + \[Exp=
> onentialE]
> \^\(\(=CE=B3\
> \ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + 2\ =CE=B2\ \@=CF=B5 +
>                                     =CE=B3\ \((1 - 2\ =CE=B2\ \@=CF=B5 +
>                                       =CF=B5)\))\))\) + 4\ Da\ \((\(-1\) +
> =CE=B3)\)\^2\
> \ =CF=B5\ \((9\ =CE=B3 -
>                           3\ =CE=B3\^2 + 2\ \[ExponentialE]\^\(\(=CE=B3\ \@=
> =CF=B5\)\/
> \@Da\)\ \
> \((\(-1\) + =CE=B3)\)\ \((5 + 2\ =CE=B3\ \((2 + 7\ =CE=B2\ \@=CF=B5)\) - 5\=
>  =CE=B2\ \@=CF=B5)\) - 2\
> \
> \[ExponentialE]\^\(\(3\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) +
>                                   =CE=B3)\)\ \((\(-5\) - 4\ =CE=B3 -
>                                 5\ =CE=B2\ \@=CF=B5 + 14\
>                                     =CE=B2\ =CE=B3\ \@=CF=B5)\) - 5\ =CE=B2=
> \ \@=CF=B5 + 19\ =CE=B2\
>                                       =CE=B3\ \@=CF=B5 -
>                                 2\ =CE=B2\ =CE=B3\^2\ \@=CF=B5 + 2\ =CE=B3\=
>  =CF=B5 - 2\ =CE=B3\^2\ =CF=B5
> + 6\ =CE=B2\
> \^2\ =CE=B3\^2\ =CF=B5 + \[ExponentialE]\^\(\(4\
>                                     =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((
>                                       5\ =CE=B2\ \@=CF=B5 + =CE=B3\ \((9 - =
> 19\
>                                         =CE=B2\ \@=CF=B5 +
>                                         2\ =CF=B5)\) + =CE=B3\^2\ \((\(-3\)=
>  +
> 2\
>                                         =CE=B2\ \@=CF=B5 - 2\ =CF=B5 + 6\ =
> =CE=B2\^2\
>                           =CF=B5)\))\) - 2\ \[ExponentialE]\^\(\(2\ =CE=B3\=
>  \@=CF=B5\)
> \/\@Da\
> \)\ \((\(-10\) + =CE=B3\ \((11 + 2\ =CF=B5)\) +
>                                     =CE=B3\^2\ \((\(-7\) + \((\(-2\) + 6\
>                                         =CE=B2\^2)\)\ =CF=B5)\))\))\) + 24\
>                                         Da\^2\ \((\(-1\) + \
> \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\^2\ \((1 - 2\ =CE=B3 + =
> =CE=B3\^2 + 4\ =CE=B2
> \ \@=CF=B5 -
>                                         8\ =CE=B2\ =CE=B3\ \@=CF=B5 +
>                           4\ =CE=B2\ =CE=B3\^2\ \@=CF=B5 - 3\ =CF=B5 + 4\ =
> =CE=B2\^2\ =CF=B5 - 8\ =CE=B2
> \^2\ =CE=B3\ =CF=B5 \
> + 3\ =CE=B3\^2\ =CF=B5 + 4\ =CE=B2\^2\ =CE=B3\^2\ =CF=B5 - 8\ =CE=B2\ =CE=
> =B3\ =CF=B5\^\(3/2\) + 8\ =CE=B2\ =CE=B3\^2\ \
> =CF=B5\^\(3/2\) + =CE=B3\^2\ =CF=B5\^2 + 2\ \[ExponentialE]\^\(\(=CE=B3\ \@=
> =CF=B5\)\/\@Da\)\ \
> ((1 + \
> \((3 - 4\ =CE=B2\^2)\)\ =CF=B5 + =CE=B3\ \((\(-2\) + 8\ \((\(-1\) + =CE=B2\=
> ^2)\)\ =CF=B5)\) + =CE=B3
> \^2\ \
> \((1 + \((5 - 4\
>                                   =CE=B2\^2)\)\ =CF=B5 + =CF=B5\^2)\))\) + \
> [ExponentialE]\^\
> \(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((1 - 4\ =CE=B2\ \@=CF=B5 - 3\ =CF=B5 +=
>  4\ =CE=B2\^2\ =CF=B5 + =CE=B3\ \((\
> (-2\) \
> - 8\ =CE=B2\^2\ =CF=B5 + 8\ =CE=B2\ \@=CF=B5\ \((1 + =CF=B5)\))\) + =CE=B3\=
> ^2\ \((1 + 3\ =CF=B5 + 4\ =CE=B2
> \^2\ =CF=B5 + =CF=B5\
> \^2 - 4\ =CE=B2\ \@=CF=B5\ \((1 + 2\ =CF=B5)\))\))\))\) +
>                                 4\ Da\^\(3/2\)\ \((\(-1\) + \
> [ExponentialE]\^\
> \(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\)\ \@=CF=B5\ \((9 - =
> 6\
>                                         =CE=B3 - 3\ =CE=B3\^2 + 18\ =CE=B2\=
>  \@=CF=B5 -
> 18\
>                                         =CE=B2\ =CE=B3\^2\ \@=CF=B5 + 4\ =
> =CF=B5 - 17\ =CE=B3\ =CF=B5
> + 24\
>                                         =CE=B2\^2\ =CE=B3\ =CF=B5 +
>                                         =CE=B3\^2\ =CF=B5 - 24\ =CE=B2\^2\ =
> =CE=B3\^2\ =CF=B5 -
> 12\
>                                         =CE=B2\ =CE=B3\^2\
>                                         =CF=B5\^\(3/2\) + \[ExponentialE]\^\
> (\(3\ \
> =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((9 - 18\ =CE=B2\ \@=CF=B5 + 4\
>                                     =CF=B5 + =CE=B3\ \((\(-6\) + \((\(-17\)=
>  +
> 24\ =CE=B2\^2)\
> \)\ =CF=B5)\) + =CE=B3\^2\ \((\(-3\) + =CF=B5 - 24\ =CE=B2\^2\ =CF=B5 + 6\ =
> =CE=B2\ \@=CF=B5\ \((3 + 2\
>                                         =CF=B5)\))\))\) - \[ExponentialE]\^\
> (\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\)\ \((9 + 54\ =CE=B2\ \@=CF=B5 + 4\ =CF=B5 + =CE=B3\ \((\(=
> -30\) - 96\ =CE=B2\ \@=CF=B5 -
> 17\
>                                         =CF=B5 + 24\ =CE=B2\^2\ =CF=B5)\) +=
>  =CE=B3\^2\ \
> ((21 +
>                                         25\ =CF=B5 - 24\ =CE=B2\^2\ =CF=B5 =
> + 6\
>                                     =CE=B2\ \@=CF=B5\ \((7 + 2\ =CF=B5)\))\=
> ))\) + \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-9\) + 54\
>                                     =CE=B2\ \@=CF=B5 -
>                                       4\ =CF=B5 + =CE=B3\ \((30 - 96\ =CE=
> =B2\ \@=CF=B5 +
> 17\ =CF=B5 - \
> 24\ =CE=B2\^2\ =CF=B5)\) + =CE=B3\^2\ \((\(-21\) - 25\ =CF=B5 + 24\ =CE=B2\=
> ^2\ =CF=B5 + 6\ =CE=B2\ \@=CF=B5\ \
> ((7 +
>                                         2\ =CF=B5)\))\))\))\) - 2\ \@Da\ \
> ((\(-1\) \
> + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\)=
> \^4\ \@=CF=B5\ \
> ((1 - \
> =CE=B3 + 3\ =CE=B2\ \@=CF=B5 - 3\ =CE=B2\ =CE=B3\ \@=CF=B5 - 2\ =CF=B5 + 2\=
>  =CE=B2\^2\ =CF=B5 - 3\
>                                 =CE=B3\ =CF=B5 - 2\ =CE=B2\^2\ =CE=B3\ =CF=
> =B5 - 5\ =CE=B2\ =CE=B3\ =CF=B5\^
> \(3/2\) - \
> \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B2\ \@=CF=
> =B5 - 2\ =CF=B5 +
>                                       2\ =CE=B2\^2\ =CF=B5 + =CE=B3\ \((1 +
>
>                                   7\ =CF=B5 - 2\ =CE=B2\^2\
>                               =CF=B5 + =CE=B2\ \@=CF=B5\ \((\(-1\) + 5\ =CF=
> =B5)\))\))\) +
> \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((1 + =CE=B2\ \@=CF=B5=
>  + 2\ =CF=B5 - 2\
>                               =CE=B2\^2\ =CF=B5 + =CE=B3\ \((\(-1\) - 7\ =
> =CF=B5 + 2\ =CE=B2\^2\
> =CF=B5 + =CE=B2\ \
> \@=CF=B5\ \((\(-1\) + 5\ =CF=B5)\))\))\) + \[ExponentialE]\^\(\(3\
>                                     =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((1 - 3\ =
> =CE=B2\ \@=CF=B5
> - 2\ =CF=B5 \
> + 2\ =CE=B2\^2\ =CF=B5 + =CE=B3\ \((\(-1\) - 3\ =CF=B5 - 2\ =CE=B2\^2\
>                                     =CF=B5 + =CE=B2\ \@=CF=B5\ \((3 + 5\ =
> =CF=B5)\))\))\))
> \))\)\ =CF=83\
> \_1)\) + \((\(-1\) + =CE=B3)\)\^2\ =CF=B5\ \((\((1 - =CE=B3)\)\ \((6720\
>                                         Da\^3\ \((\(-1\) + \
> \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\^4\ \@=CF=B5 - 17\ \((\(=
> -1\) +
>                                         =CE=B3)\)\^6\ \((
>                                     1 + \[ExponentialE]\^\(\(2\ =CE=B3\ \
> \@=CF=B5\)\/\@Da\)\ \((1 - =CE=B2\ \@=CF=B5)\) + =CE=B2\ \@=CF=B5)\)\^2\ \@=
> =CF=B5 - 153\ \@Da\ \((\
> (-1\) + \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\=
> )\^5\ \((\
> (-1\) + \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B2\ \@=
> =CF=B5)\) - =CE=B2\
> \@=CF=B5)\)\ \
> =CF=B5 - 840\ Da\^\(5/2\)\ \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=
> =B5\)\/\@Da
> \))\)\^3\
> \ \((\(-4\) - 8\ =CE=B2\ \@=CF=B5 - 5\ =CF=B5 + =CE=B3\ \((4 + 8\ =CE=B2\ \=
> @=CF=B5 + 9\ =CF=B5)\) + \
> \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-4\) + 8\
>                                   =CE=B2\ \@=CF=B5 - 5\ =CF=B5 + =CE=B3\ \(=
> (4 -
>                                 8\ =CE=B2\ \@=CF=B5 + 9\ =CF=B5)\))\))\) + =
> 84\ Da\^2\
> \
> \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\^2\ \((\(-1\=
> ) + =CE=B3)
> \)\ \
> \@=CF=B5\ \((\(-3\) - 60\ =CE=B2\ \@=CF=B5 + =CE=B3\ \((43 + 100\ =CE=B2\ \=
> @=CF=B5 + 25\ =CF=B5)\) +
>                                       2\ \[ExponentialE]\^\(\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\)\ \((\(-57\) + =CE=B3\ \((57 +
>                                         25\ =CF=B5)\))\) + \[ExponentialE]\^
> \(\(2\ \
> =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-3\) + 60\ =CE=B2\ \@=CF=B5 + =CE=B3\ \((4=
> 3 - 100\ =CE=B2\ \@=CF=B5 +
> 25\ =CF=B5)\))\
> \))\) + 4\ Da\ \((\(-1\) + =CE=B3)\)\^3\ \@=CF=B5\ \((112 - 7\
>                                         =CE=B3 - 224\ \[ExponentialE]\^\
> (\(3\
>                                       =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\)=
>  + =CE=B3)
> \)\ \((\
> \(-1\) + =CE=B2\ \@=CF=B5)\) + 224\ \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)=
> \/\@Da\)\ \((\
> (-1\) + \
> =CE=B3)\)\ \((1 + =CE=B2\ \@=CF=B5)\) + 112\ =CE=B2\ \@=CF=B5 + 98\ =CE=B2\=
>  =CE=B3\ \@=CF=B5 + 97\ =CF=B5 - 97\
>                                   =CE=B3\ =CF=B5 + 105\ =CE=B2\^2\ =CE=B3\ =
> =CF=B5 + \
> \[ExponentialE]\^\(\(4\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((112 - 112\ =CE=B2\ \=
> @=CF=B5 + 97\ =CF=B5
> + =CE=B3\ \
> \((\(-7\) - 98\ =CE=B2\ \@=CF=B5 - 97\ =CF=B5 + 105\ =CE=B2\^2\
>                                         =CF=B5)\))\) - 2\ \[ExponentialE]\^\
> (\(2\ \
> =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-112\) + 97\ =CF=B5 + =CE=B3\ \((7 + \((\(=
> -97\) + 105\ =CE=B2
> \^2)\)\
>                                         =CF=B5)\))\))\) + 28\ Da\^\(3/
>                                     2\)\ \((\(-1\) + \[ExponentialE]\^\
> (\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\)\^2\ \((15 - 15\ =CE=B3 + 45\ =
> =CE=B2\ \@=CF=B5 -
> 45\ =CE=B2\ =CE=B3\ \
> \@=CF=B5 - 82\ =CF=B5 + 30\ =CE=B2\^2\ =CF=B5 - 8\ =CE=B3\ =CF=B5 - 30\ =CE=
> =B2\^2\ =CE=B3\ =CF=B5 - 90\ =CE=B2\ =CE=B3\ =CF=B5\^
> \(3/
>                           2\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@=
> Da\)\
> \((15 \
> - 15\ =CE=B2\ \@=CF=B5 + 82\ =CF=B5 - 30\ =CE=B2\^2\ =CF=B5 + =CE=B3\ \((\(=
> -15\) + 15\ =CE=B2\ \((1 - 6\
> =CF=B5)\)\ \
> \@=CF=B5 - 172\ =CF=B5 + 30\ =CE=B2\^2\ =CF=B5)\))\) + \[ExponentialE]\^\(\=
> (3\
>                                         =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((15 -=
>  45\ =CE=B2
> \ \@=CF=B5 \
> - 82\ =CF=B5 + 30\ =CE=B2\^2\ =CF=B5 + =CE=B3\ \((\(-15\) - 8\ =CF=B5 - 30\=
>  =CE=B2\^2\ =CF=B5 +
>                                     45\ =CE=B2\ \@=CF=B5\ \((1 + 2\ =CF=B5)=
> \))\))\) +
> \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((
>                                       15 + 15\ =CE=B2\ \@=CF=B5 + 82\ =CF=
> =B5 - 30\ =CE=B2
> \^2\
>                                         =CF=B5 + =CE=B3\ \((\(-15\) - 172\ =
> =CF=B5 +
> 30\ =CE=B2\^2\
> \ =CF=B5 + 15\ =CE=B2\ \@=CF=B5\ \((\(-1\) + 6\ =CF=B5)\))\))\))\))\)\ =CE=
> =BB - 140\ \((144\
>                                     Da\^3\ \((\(-1\) + \[ExponentialE]
> \^\(\(=CE=B3\
> \ \@=CF=B5\)\/\@Da\))\)\^4\ \@=CF=B5 - \((\(-1\) + =CE=B3)\)\^6\ \((
>                                     1 + \[ExponentialE]\^\(\(2\ =CE=B3\ \
> \@=CF=B5\)\/\@Da\)\ \((1 - =CE=B2\ \@=CF=B5)\) + =CE=B2\ \@=CF=B5)\)\^2\ \@=
> =CF=B5 - 8\ \@Da\ \((\
> (-1\) + \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\=
> )\^5\ \((\
> (-1\) + \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B2\ \@=
> =CF=B5)\) - =CE=B2\
> \@=CF=B5)\)\ \
> =CF=B5 + 24\ Da\^2\ \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@=
> Da\))\)
> \^2\ \
> \((\(-1\) +
>                                 =CE=B3)\)\ \@=CF=B5\ \((\(-5\)\ =CE=B2\ \@=
> =CF=B5 + =CE=B3\ \((3
> + 8\ =CE=B2\
> \ \@=CF=B5 + 2\ =CF=B5)\) + 2\ \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@D=
> a\)\ \((\(-5\)
> + =CE=B3\ \
> \((5 + 2\ =CF=B5)\))\) + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)=
> \ \((5\ =CE=B2\
> \@=CF=B5 + \
> =CE=B3\ \((3 -
>                                         8\ =CE=B2\ \@=CF=B5 + 2\ =CF=B5)\))=
> \))\) -
> 24\ \
> Da\^\(5/2\)\ \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)=
> \^3\ \
> ((\(-3\
> \) - 6\ =CE=B2\ \@=CF=B5 - 4\ =CF=B5 + =CE=B3\ \((3 + 6\
>                                     =CE=B2\ \@=CF=B5 + 7\ =CF=B5)\) + \[Exp=
> onentialE]
> \^\(\(=CE=B3\
> \ \@=CF=B5\)\/\@Da\)\ \((\(-3\) + 6\ =CE=B2\ \@=CF=B5 -
>                                 4\ =CF=B5 + =CE=B3\ \((3 - 6\ =CE=B2\ \@=CF=
> =B5 + 7\ =CF=B5)\))
> \))\) + \
> 2\ Da\ \((\(-1\) + =CE=B3)\)\^3\ \@=CF=B5\ \((9 - 3\ =CE=B3 - 18\ \[Exponen=
> tialE]\^\
> (\(3\ =CE=B3\ \
> \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B3)\)\ \((\(-1\) + =CE=B2\ \@=CF=B5)\) =
> + 18\ \
> \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B3)\)\ \((=
> 1 + =CE=B2\ \@=CF=B5)
> \) +
>                                     9\ =CE=B2\ \@=CF=B5 + 3\ =CE=B2\ =CE=B3=
> \ \@=CF=B5 + 8\ =CF=B5 -
> 8\ =CE=B3\ =CF=B5 \
> + 6\ =CE=B2\^2\ =CE=B3\ =CF=B5 + \[ExponentialE]\^\(\(4\ =CE=B3\ \@=CF=B5\)=
> \/\@Da\)\ \((9 - 9\ =CE=B2
> \ \@=CF=B5 \
> + 8\ =CF=B5 + =CE=B3\ \((\(-3\) - 3\ =CE=B2\ \@=CF=B5 - 8\ =CF=B5 + 6\ =CE=
> =B2\^2\
>                                       =CF=B5)\))\) -
>                                         2\ \[ExponentialE]\^\(\(2\ =CE=B3\
> \@=CF=B5\)\/\
> \@Da\)\ \((\(-9\) + 8\ =CF=B5 + =CE=B3\ \((3 + \((\(-8\) + 6\
>                                       =CE=B2\^2)\)\ =CF=B5)\))\))\) + 12\ D=
> a\^
> \(3/
>                                       2\)\ \((\(-1\) + \[ExponentialE]
> \^\(\(=CE=B3\
> \ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\)\^2\ \((1 - =CE=B3 + 3\ =CE=
> =B2\ \@=CF=B5 - 3\ =CE=B2\ =CE=B3
> \ \@=CF=B5 \
> - 6\ =CF=B5 + 2\ =CE=B2\^2\ =CF=B5 + =CE=B3\ =CF=B5 - 2\ =CE=B2\^2\ =CE=B3\=
>  =CF=B5 - 5\ =CE=B2\ =CE=B3\ =CF=B5\^\(3/
>                                     2\) - \[ExponentialE]\^\(\(=CE=B3\ \@=
> =CF=B5\)
> \/\@Da\
> \)\ \((\(-1\) + =CE=B2\ \@=CF=B5 - 6\ =CF=B5 + 2\ =CE=B2\^2\ =CF=B5 + =CE=
> =B3\ \((1 + 11\ =CF=B5 - 2\ =CE=B2
> \^2\ =CF=B5 +
>                                       =CE=B2\ \@=CF=B5\ \((\(-1\) +
>                                         5\ =CF=B5)\))\))\) + \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((1 + =CE=B2\ \@=CF=B5=
>  + 6\ =CF=B5 - 2\ =CE=B2
> \^2\ =CF=B5 +
>                                         =CE=B3\ \((\(-1\) -
>                                     11\ =CF=B5 + 2\ =CE=B2\^2\ =CF=B5 + =CE=
> =B2\ \@=CF=B5\ \((\
> (-1\) + \
> 5\ =CF=B5)\))\))\) + \[ExponentialE]\^\(\(3\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \(=
> (1 - 3\ =CE=B2\
> \@=CF=B5 -
>                                       6\ =CF=B5 + 2\ =CE=B2\^2\ =CF=B5 + =
> =CE=B3\ \((\(-1\)
> + =CF=B5 -
>                                       2\ =CE=B2\^2\ =CF=B5 +
>                                         =CE=B2\ \@=CF=B5\ \((3 + 5\
>                                         =CF=B5)\))\))\))\))\)\ =CF=83\_1)\)=
> )\)/\
> ((140\ \
> \@=CF=B5\ \((24\ Da\^2\ \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)=
> \/\@Da\))\)
> \^2\ \
> \@=CF=B5 + \((\(-1\) + =CE=B3)\)\^4\ \((\(-1\) + \[ExponentialE]\^\(\(2\ =
> =CE=B3\ \@=CF=B5\)
> \/\@Da\
> \)\ \((\(-1\) + =CE=B2\ \@=CF=B5)\) - =CE=B2\ \@=CF=B5)\)\ \@=CF=B5 -
>                                       12\ Da\ \((\(-1\) + =CE=B3)\)\ \((\
> (-1\) - 2\
> \ \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B3)\) + \
> [ExponentialE]\^\
> \(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B2\ =CE=B3\ \@=CF=B5)\) =
> - =CE=B2\
>                               =CE=B3\ \@=CF=B5)\)\ \@=CF=B5 + 4\ \@Da\ \((\=
> (-1\) + \
> \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\=
> )\^3\ =CF=B5 -
> 12\ \
> Da\^\(3/2\)\ \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)=
> \ \((\
> (-1\) \
> - 2\ =CE=B2\ \@=CF=B5 + =CE=B3\ \((1 + 2\ =CE=B2\ \@=CF=B5 + =CF=B5)\) + \[=
> ExponentialE]\^\(\(=CE=B3\ \
> \@=CF=B5\)\/\@Da\)\ \((\(-1\) + 2\ =CE=B2\ \@=CF=B5 + =CE=B3\ \((1 - 2\ =CE=
> =B2\ \@=CF=B5 + \
> =CF=B5)\))\))\))\)\^2)\))\)\)

Select the cells, press Ctrl+Shift+I (simultanesouly!) so
that Mathematica code appeared in InputForm. Avoid special
characters like greek letters. Copy as Plain Text is preferable.
Then paste the code to the post and send the message to MathGroup.
Follow these simple advice we can see your code in a more readable
format that it is now...

Dimitris



  • Prev by Date: Re: something funny
  • Next by Date: Re: A Note of Thanks
  • Previous by thread: how to simplify n write in mathtype
  • Next by thread: Re: how to simplify n write in mathtype