Re: how to simplify n write in mathtype
- To: mathgroup at smc.vnet.net
- Subject: [mg78787] Re: how to simplify n write in mathtype
- From: dimitris <dimmechan at yahoo.com>
- Date: Mon, 9 Jul 2007 01:44:06 -0400 (EDT)
- References: <f6qegv$a6r$1@smc.vnet.net>
bhargavi : > hi, > i have very huge expression nearly 7papers,i could't do full > simplify.i tried simplify command.then to no use.i want to converrt > that expression to math type.pla any one can suggest me idea.n i can't > make up the brackets where does it start n end. > thanking you > bhargavi. > my expression is: > \!\(=CE=BB/\((=CF=83\_1 - \((\(-420\)\ > Da\ \((\((240\ Da\^\(7/ > 2\)\ \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\))\)\^3\ \((1 + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\= > @Da\))\)\ =CF=B5 > \ =CE=B7 + \ > \((\(-1\) + =CE=B3)\)\^5\ =CE=B3\ \((\(-2\)\ \[ExponentialE]\^\(\(=CE=B3\ \= > @=CF=B5\)\/\@Da > \)\ \((\ > \(-1\) + =CE=B3)\) + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ = > =CE=B3\ \((\(-1\) > + > =CE=B2\ \@=CF=B5)\) - =CE=B3\ \((1 + =CE=B2\ = > \@=CF=B5)\))\)\ \((\ > (-1\) + \ > \[ExponentialE]\^\(\(2\ > =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE= > =B2\ \@=CF=B5)\) > - =CE=B2\ \ > \@=CF=B5)\)\ =CF=B5\^\(3/2\)\ =CE=B7 - 96\ Da\^3\ \((\(-1\) + \[Exponential= > E]\^\(\(=CE=B3\ > \ > \@=CF=B5\)\/\@Da\))\)\^2\ \@=CF=B5\ \((\((3 + 4\ \[ExponentialE]\^\(\(=CE= > =B3\ \@=CF=B5\)\/ > \@Da\) \ > + 3\ \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE= > =B3)\)\ =CE=B7 > - > 5\ \((\(-1\) + \[ExponentialE]\^\ > (\(2\ =CE=B3\ \ > \@=CF=B5\)\/\@Da\))\)\ =CE=B2\ \((\(-1\) + > =CE=B3)\)\ \@=CF=B5\ =CE=B7 + =CF=B5\ \((\(= > -1\) + =CE=B3 + =CE=B3\ =CE=B7 > + \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + > =CE=B3 + =CE=B3\ =CE=B7)\) + \[Expo= > nentialE]\^ > \(\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\)\ \((2 + =CE=B3\ \((\(-2\) + 3\ =CE=B7)\))\))\))\) + > 2\ Da\^\(3/2\)\ \((\(-1\) + \[ExponentialE]\^ > \(\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\)\ =CF=B5\ \((14 - 18\ =CE=B3 - > 6\ =CE=B3\^2 + 10\ =CE=B3\^3 + 28\ > =CE=B2\ \@=CF=B5 - 12\ =CE=B2\ =CE=B3\ \@= > =CF=B5 - 60\ =CE=B2\ =CE=B3 > \^2\ \@=CF=B5 + \ > 44\ =CE=B2\ =CE=B3\^3\ \@=CF=B5 + 2\ =CF=B5 - 20\ =CE=B3\ =CF=B5 + 48\ =CE= > =B2\^2\ =CE=B3\ =CF=B5 + 10\ =CE=B3\^2\ =CF=B5 - > 96\ =CE=B2\^2\ =CE=B3\^2\ =CF=B5 + 8\ =CE= > =B3\^3\ =CF=B5 + 48\ =CE=B2 > \^2\ > =CE=B3\^3\ =CF=B5 - 24\ =CE=B2\ =CE=B3\^2\ = > =CF=B5\^\(3/2\) + > 24\ =CE=B2\ =CE=B3\^3\ =CF=B5\^\(3/2\) + 7\= > =CE=B7 - > 51\ =CE=B3\ =CE=B7 + 87\ =CE=B3\^2\ =CE=B7 = > - 43\ > =CE=B3\^3\ =CE=B7 - 30\ =CE=B2\ =CE=B3\ \@= > =CF=B5\ =CE=B7 + 66\ =CE=B2\ > =CE=B3\^2\ \@=CF=B5\ =CE=B7 - 36\ =CE=B2\ = > =CE=B3\^3\ \@=CF=B5\ =CE=B7 - > 4\ =CE=B3\ =CF=B5\ \ > =CE=B7 + 14\ =CE=B3\^2\ =CF=B5\ =CE=B7 - 14\ > =CE=B3\^3\ =CF=B5\ =CE=B7 - 4\ =CE=B2\ = > =CE=B3\^3\ =CF=B5\^\(3/2\)\ > =CE=B7 + \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-14\) + 84\ =CE=B2= > \ \@=CF=B5 - 2\ > =CF=B5 + > 11\ =CE=B7 + =CE=B3\^2\ \((\(-90\) + 96\ = > =CE=B2\^2\ =CF=B5 > + 6\ =CE=B2\ > \ \@=CF=B5\ \((34 + 4\ =CF=B5 - 11\ =CE=B7)\) + 171\ =CE=B7 - 2\ =CF=B5\ \(= > (29 + =CE=B7)\))\) + =CE=B3\ \ > (( > 66 - 48\ =CE=B2\^2\ =CF=B5 - 99\ =CE=B7 + 4= > \ =CF=B5\ \((5 > + > =CE=B7)\) + 6\ =CE=B2\ \@=CF=B5\ \((\(-38\)= > + 5\ =CE=B7)\)) > \) + > =CE=B3\^3\ \((38 - 48\ =CE=B2\^2\ =CF=B5 + = > =CF=B5\ \((40 - > 6\ \ > =CE=B7)\) - 83\ =CE=B7 + 4\ > =CE=B2\ \@=CF=B5\ \((\(-15\) + =CF=B5\ \((\= > (-6\) + =CE=B7) > \) + 9\ \ > =CE=B7)\))\))\) - \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\)\ \((14 + = > 84\ =CE=B2\ \@=CF=B5 > + 2\ =CF=B5 \ > - 11\ =CE=B7 + =CE=B3\^2\ \((90 - 96\ =CE=B2\^2\ =CF=B5 + 6\ > =CE=B2\ \@=CF=B5\ \((34 + 4\ > =CF=B5 - 11\ > =CE=B7)\) - 171\ =CE=B7 + 2\ =CF=B5= > \ \((29 + > =CE=B7)\))\) \ > + =CE=B3\ \((\(-66\) + 48\ =CE=B2\^2\ =CF=B5 + 99\ > =CE=B7 - 4\ =CF=B5\ \((5 + =CE=B7)\= > ) + 6\ =CE=B2\ > \@=CF=B5\ \ > \((\(-38\) + 5\ =CE=B7)\))\) + =CE=B3\^3\ \((\(-38\) + 48\ =CE=B2\^2\ =CF= > =B5 + 83\ > =CE=B7 + =CF=B5\ \((\(-40\) + 6\ = > =CE=B7)\) + > 4\ > =CE=B2\ \@=CF=B5\ \((\(-15\) + =CF= > =B5\ \((\ > (-6\) + > =CE=B7)\) + 9\ =CE=B7)\))\))\) + \ > \[ExponentialE]\^\(\(3\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((14 - 28\ =CE=B2\ \@= > =CF=B5 + 2\ =CF=B5 + > 7\ =CE=B7 + =CE=B3\ \((\(-18\) + 48= > \ =CE=B2 > \^2\ =CF=B5 - \ > 51\ =CE=B7 - 4\ =CF=B5\ \((5 + =CE=B7)\) + 6\ =CE=B2\ \@=CF=B5\ \((2 + 5\ = > =CE=B7)\))\) + =CE=B3\^2\ \((\ > (-6\) - > 96\ =CE=B2\^2\ =CF=B5 + > 6\ =CE=B2\ \@=CF=B5\ \((10 + 4\ =CF=B5 - 11= > \ =CE=B7)\) + > 87\ =CE=B7 + \ > 2\ =CF=B5\ \((5 + 7\ =CE=B7)\))\) + =CE=B3\^3\ \((10 + 48\ > =CE=B2\^2\ =CF=B5 + > =CF=B5\ \((8 - 14\ =CE=B7)\) - 43\ = > =CE=B7 + 4\ =CE=B2 > \ \@=CF=B5\ \ > \((\(-11\) + =CF=B5\ \((\(-6\) + > =CE=B7)\) + 9\ =CE=B7)\))\))\))\) += > 2\ Da > \ \ > \((\(-1\) + =CE=B3)\)\^2\ \@=CF=B5\ \((\((\(-1\) + \[ExponentialE]\^\(\(=CE= > =B3\ \ > \@=CF=B5\)\/\@Da\))\)\^2\ \((1 + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)= > \/\@Da\))\) > \ \ > \((\(-1\) + =CE=B3)\)\^3\ > =CE=B7 - \((\(-1\) + \ > \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\^3\ \((1 + \[Exponential= > E]\^\ > (\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\))\)\ > =CE=B2\ \((\(-1\) + =CE=B3)\)\^3\ \@= > =CF=B5\ =CE=B7 + > \ > \((\(-1\) + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\))\)\^2\ =CE= > =B3\ =CF=B5\^2\ \ > ((1 + 2\ > \ =CE=B3\ \((\(-1\) + 6\ =CE=B2\^2 - =CE=B7)\) + =CE=B3\^2\ \((1 + 2\ =CE= > =B2\^2\ \((\(-6\) + =CE=B7) > \) + 2\ \ > =CE=B7)\))\) - \((\(-1\) + \[ExponentialE]\^\(\(2\ > =CE=B3\ \@=CF=B5\)\/\@Da\))\)\ =CE=B2\ > =CF=B5\^\(3/2\)\ \((\(-2\) + 20\ =CE= > =B3 - > 10\ \ > =CE=B3\^2 - 8\ =CE=B3\^3 + 5\ =CE=B3\ =CE=B7 - 16\ =CE=B3\^2\ =CE=B7 + 15\ = > =CE=B3\^3\ > =CE=B7 - 2\ \[ExponentialE]\^\(\(=CE=B3= > \ \ > \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B3)\)\^2\ \((\(-2\) + =CE=B3\ \((16 + 5= > \ =CE=B7)\))\) > + \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-2\) + 5\ =CE=B3\ = > \(( > 4 + =CE=B7)\) - 2\ =CE=B3\^2\ \((5 + > 8\ =CE=B7)\) + =CE=B3\^3\ \((\(-8\) += > 15\ > \ > =CE=B7)\))\))\) + =CF=B5\ \((3 + 5\ =CE=B3 - 7\ =CE=B3\^2 - =CE=B3\^3 - 2\ = > =CE=B7 + 11\ =CE=B3\ =CE=B7 - 22\ =CE=B3 > \^2\ =CE=B7 \ > + 15\ =CE=B3\^3\ =CE=B7 + 2\ \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\= > )\ \((\(-1\) + > =CE=B3)\)\^2\ > \ \((\(-8\) + =CE=B3\ \((\(-6\) + 5\ =CE=B7)\))\) + 2\ \[ExponentialE]\^\(\= > (3\ =CE=B3 > \ \@=CF=B5\)\ > \/\@Da\)\ \((\(-1\) + =CE=B3)\)\^2\ \((\(-8\) + > =CE=B3\ \((\(-6\) + 5\ > =CE=B7)\))\) + 2\ \[ExponentialE]\^\ > (\(2\ =CE=B3\ \ > \@=CF=B5\)\/\@Da\)\ \((13 + =CE=B3\^2\ \((23 - 6\ =CE=B7)\) + 2\ =CE=B7 - = > =CE=B3\ \((25 + 3\ =CE=B7) > \) + \ > =CE=B3\^3\ \((\(-11\) + 9\ =CE=B7)\))\) + \[ExponentialE]\^\(\(4\ > =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((3 - 2\= > =CE=B7 + =CE=B3 > \ \((5 \ > + 11\ =CE=B7)\) + =CE=B3\^3\ \((\(-1\) + 15\ =CE=B7)\) - =CE=B3\^2\ \(( > 7 + 22\ =CE=B7)\))\))\))\) + 48\ > Da\^\(5/2\)\ \((\(-1\) + \ > \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\)\ = > \((2\ \((\ > (-1\) + \ > \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\^2\ \((1 + \[Exponential= > E]\^\ > (\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\))\)\ =CE=B3\ =CF=B5\^2 + \((1 + 4\ \[ExponentialE]\^\(\(= > =CE=B3\ \@=CF=B5\)\/ > \@Da\) + \ > 4\ \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\) + \[ExponentialE]\^\(= > \(3\ =CE=B3 > \ \ > \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\)\ =CE=B7 - 2\ \((\(-3\) - \[Exp= > onentialE] > \^\(\(=CE=B3\ > \ \@=CF=B5\)\/\@Da\) + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\) += > 3\ \ > \[ExponentialE]\^\(\(3\ =CE=B3\ \@=CF=B5\)\/\@Da\))\)\ =CE=B2\ \((\(-1\) + = > =CE=B3)\)\ \@=CF=B5\ > =CE=B7 - 4\ \ > \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\ =CE=B2\ =CF= > =B5\^\(3/2\)\ \ > \((\(-1\) + =CE=B3 + =CE=B3\ =CE=B7 + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF= > =B5\)\/\@Da\)\ \((\ > (-1\) + > =CE=B3 + =CE=B3\ =CE=B7)\) + \[Expo= > nentialE]\^ > \(\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\)\ \((2 + =CE=B3\ \((\(-2\) + 3\ =CE=B7)\))\))\) + \(( > 1 + \[ExponentialE]\^\(\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\))\)\ =CF=B5\ \((\(-2\) + 2\ =CE=B3 + > 2\ =CE=B7 - 5\ =CE=B2\^2\ =CE=B7 + 5\= > =CE=B2\^2\ =CE=B3\ > =CE=B7 + \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-2\) + \((2 - 5\ = > =CE=B2\^2)\) > \ =CE=B7 + \ > =CE=B3\ \((2 + 5\ =CE=B2\^2\ =CE=B7)\))\) - 2\ \[ExponentialE]\^\(\(=CE=B3\= > \@=CF=B5\)\/\@Da\)\ > \ > \((\(-2\) + \((2 - > 5\ =CE=B2\^2)\)\ =CE=B7 + =CE=B3\ \= > (( > 2 + 5\ \((\(-1\) + =CE=B2\^2)\)\ \ > =CE=B7)\))\))\))\) + \@Da\ \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF= > =B5\)\/\@Da > \))\)\ \ > \((\(-1\) + =CE=B3)\)\^4\ =CF=B5\ \((\(-\(( > 1 + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5= > \)\/ > \@Da\) + \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\) + \[ExponentialE]\^\(\(3= > \ =CE=B3\ > \@=CF=B5\)\/\ > \@Da\))\)\)\ \((1 - 4\ =CE=B3 + 3\ > =CE=B3\^2)\)\ > =CE=B7 + \((\(-1\) + \[ExponentialE]\^ > \(\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\))\)\ =CE=B2\ \((\(-1\) + =CE=B3)\)\ \((\(-1\) + > 5\ =CE=B3 + \[ExponentialE]\^\(\(2\ > =CE=B3\ \@=CF=B5\ > \)\/\@Da\)\ \((\(-1\) + 5\ =CE=B3)\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF= > =B5\)\/\@Da\) > \ \ > \((\(-2\) + 6\ =CE=B3)\))\)\ \@=CF=B5\ =CE=B7 + \((\(-1\) + \[ExponentialE]= > \^\(\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\))\)\ \((1 + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da= > \))\)\^2\ =CE=B2 > \ =CE=B3\ =CF=B5\ > \^\(3/2\)\ \((\(-2\) + =CE=B3\ \((2 + 5\ =CE=B7)\))\) - \((1 + \[Exponentia= > lE]\^\ > (\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\))\)\ =CF=B5\ \((\(-1\) + =CE=B3\^2 - 2\ =CE=B2\^2\ =CE=B3\ > =CE=B7 + 5\ =CE=B3\^2\ =CE=B7 + 2\ =CE= > =B2\^2\ > =CE=B3\^2\ =CE=B7 - 2\ \[ExponentialE= > ]\^\(\ > (=CE=B3\ \ > \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B3)\)\ \((1 + =CE=B3\ \((\(-1\) + 2\ \(= > (\(-2\) + =CE=B2 > \^2)\)\ > \ =CE=B7)\))\) + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-= > 1\) - 2\ =CE=B2 > \^2\ =CE=B3\ \ > =CE=B7 + =CE=B3\^2\ \((1 + \((5 + 2\ =CE=B2\^2)\)\ =CE=B7)\))\))\))\) + 4\ = > Da\^2\ \@=CF=B5\ \ > ((6 - 18\ > =CE=B3 + 18\ =CE=B3\^2 - > 6\ =CE=B3\^3 + 24\ =CE=B2\ \@=CF=B5 - 72\ =CE=B2\= > =CE=B3\ \@=CF=B5 + > 72\ =CE=B2\ =CE=B3\^2\ \@=CF=B5 - 24\ =CE=B2\ > =CE=B3\^3\ \@=CF=B5 - 14\ =CF=B5 + 24\ =CE= > =B2\^2\ =CF=B5 + 6\ =CE=B3 > \ =CF=B5 - \ > 72\ =CE=B2\^2\ =CE=B3\ =CF=B5 + 30\ =CE=B3\^2\ =CF=B5 + 72\ =CE=B2\^2\ =CE= > =B3\^2\ =CF=B5 - > 22\ =CE=B3\^3\ =CF=B5 - 24\ =CE=B2\^2\ =CE= > =B3\^3\ =CF=B5 - 48\ =CE=B2 > \ =CE=B3\ > =CF=B5\^\(3/2\) + 96\ =CE=B2\ =CE=B3\^2\ = > =CF=B5\^\(3/ > 2\) - 48\ =CE=B2\ =CE=B3\^3\ =CF=B5\^\(3/2\= > ) + 6\ =CE=B3 > \^2\ =CF=B5\^2 \ > - 6\ =CE=B3\^3\ =CF=B5\^2 - 27\ =CE=B7 + 81\ =CE=B3\ =CE=B7 - 81\ =CE=B3\^2= > \ =CE=B7 + 27\ =CE=B3\^3\ =CE=B7 - 24\ =CE=B2 > \ \@=CF=B5\ > =CE=B7 + 48\ =CE=B2\ =CE=B3\ \@=CF= > =B5\ =CE=B7 - > 24\ =CE=B2\ =CE=B3\^2\ \@=CF=B5\ = > =CE=B7 + 15\ =CE=B3\ =CF=B5 > \ =CE=B7 - > 24\ =CE=B2\^2\ =CE=B3\ =CF=B5\ =CE= > =B7 - > 33\ =CE=B3\^2\ =CF=B5\ =CE=B7 + 48\= > =CE=B2\^2\ > =CE=B3\^2\ =CF=B5\ =CE=B7 + 18\ =CE= > =B3\^3\ =CF=B5\ =CE=B7 - > 24\ > =CE=B2\^2\ =CE=B3\^3\ =CF=B5\ =CE=B7 + > =CE=B3\^3\ > =CF=B5\^2\ =CE=B7 + 4\ \[Exponentia= > lE]\^\ > (\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B3)\)\^2\ \((\(-2\)\ \((\(-7\) + > =CE=B3)\)\ =CF=B5 - 6\ =CE=B2\^2\ =CF=B5\ \= > ((4 + =CE=B3\ \((\ > (-4\) + \ > =CE=B7)\))\) + 6\ =CE=B2\ \@=CF=B5\ \((=CE=B3\ \((2 + 4\ > =CF=B5 - 5\ =CE=B7)\) + 2\ \((\(-1\) + =CE= > =B7)\))\) + > 3\ \ > \((2 - 5\ =CE=B3)\)\ =CE=B7)\) - 4\ \[ExponentialE]\^\(\(3\ =CE=B3\ \@=CF= > =B5\)\/\@Da\)\ \ > ((\(-1\) \ > + =CE=B3)\)\^2\ \((2\ \((\(-7\) + =CE=B3)\)\ =CF=B5 + 6\ =CE=B2\^2\ =CF=B5\= > \((4 + =CE=B3\ \((\(-4\) > + \ > =CE=B7)\))\) + 6\ =CE=B2\ \@=CF=B5\ \((=CE=B3\ \((2 + 4\ =CF=B5 - 5\ =CE=B7= > )\) + > 2\ \((\(-1\) + =CE=B7)\))\) + > 3\ \((\(-2\) + 5\ =CE=B3)\)\ =CE=B7= > )\) + > \ > \[ExponentialE]\^\(\(4\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((6 - 14\ =CF=B5 + 24\ > =CE=B2\^2\ =CF=B5 + 24\ =CE=B2\ \@=CF=B5\ \= > ((\(-1\) + > =CE=B7)\) - 27\ =CE=B7 + 3\ =CE=B3\^2\ \((6 + 2\ =CF=B5\^2 + =CF=B5\ \((10 = > - 11\ > =CE=B7)\) - 8\ =CE=B2\ \@=CF=B5\ \((3 += > 4\ > =CF=B5 - =CE=B7)\) - 27\ =CE=B7 + 8\ = > =CE=B2\^2\ > =CF=B5\ \((3 + 2\ =CE=B7)\))\) - 3\ = > =CE=B3\ \(( > 6 - 8\ =CE=B2\ \@=CF=B5\ \((3 + 2\ =CF=B5 -= > 2\ =CE=B7)\) - > 27\ > =CE=B7 + 8\ =CE=B2\^2\ =CF=B5\ \((3 + > =CE=B7)\) - > =CF=B5\ \((2 + 5\ =CE=B7)\))\) + = > =CE=B3\^3\ \ > \((\(-6\) + 24\ =CE=B2\ \@=CF=B5\ \((1 + 2\ =CF=B5)\) + =CF=B5\^2\ \((\(-6\= > ) + =CE=B7)\) + > 27\ =CE=B7 - 24\ =CE=B2\^2\ =CF=B5\= > \((1 + =CE=B7) > \) + 2\ > =CF=B5\ \((\(-11\) + > 9\ =CE=B7)\))\))\) - 2\ \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \(( > 6 + \((42 - 72\ > =CE=B2\^2)\)\ =CF=B5 - 3\ =CE=B7 - = > 3\ =CE=B3\ \((6 > - 11\ > =CE=B7 + =CF=B5\ \((38 - 5\ =CE=B7 + > 8\ =CE=B2\^2\ \((\(-9\) + 2\ =CE=B7= > )\)) > \))\) + > =CE=B3\^3\ \((\(-6\) + =CF=B5\^2\ \= > ((\ > (-6\) + \ > =CE=B7)\) + 27\ =CE=B7 - 6\ =CF=B5\ \((5 - 3\ =CE=B7 + 4\ =CE=B2\^2\ \((\(-= > 3\) + 2\ > =CE=B7)\))\))\) + 3\ =CE=B3\^2\ \((6 = > + 2\ =CF=B5 > \^2 - > 19\ =CE=B7 + =CF=B5\ \((34 - 11\ = > =CE=B7 + > 8\ =CE=B2\^2\ \((\(-9\) + 4\ > =CE=B7)\))\))\))\))\))\)\ > =CE=BB - 2\ \@=CF=B5\ \((96\ > Da\^3\ \((\(-1\) + \ > \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\^4\ =CF=B5 - \((\(-1\) + > =CE=B3)\)\^5\ \((\(-1\) - > 2\ \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\= > /\@Da > \)\ \((\ > \(-1\) + =CE=B3)\) + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \(= > (\(-1\) + =CE=B3 > \ \ > \((\(-1\) + 2\ =CE=B2\ \@=CF=B5)\))\) - =CE=B3\ \((1 + 2\ =CE=B2\ \@=CF=B5)= > \))\)\ \((\(-1\) + \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + > =CE=B2\ \@=CF=B5)\) - =CE=B2\ \@=CF= > =B5)\)\ > =CF=B5 - 96\ Da\^\(5/2\)\ \((\(-1\) > + \ > \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\^3\ \@=CF=B5\ \((\(-1\) = > - 2\ =CE=B2\ > \@=CF=B5 + > =CE=B3\ \(( > 1 + 2\ =CE=B2\ \@=CF=B5 + =CF=B5)\) + \[Exp= > onentialE] > \^\(\(=CE=B3\ > \ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + 2\ =CE=B2\ \@=CF=B5 + > =CE=B3\ \((1 - 2\ =CE=B2\ \@=CF=B5 + > =CF=B5)\))\))\) + 4\ Da\ \((\(-1\) + > =CE=B3)\)\^2\ > \ =CF=B5\ \((9\ =CE=B3 - > 3\ =CE=B3\^2 + 2\ \[ExponentialE]\^\(\(=CE=B3\ \@= > =CF=B5\)\/ > \@Da\)\ \ > \((\(-1\) + =CE=B3)\)\ \((5 + 2\ =CE=B3\ \((2 + 7\ =CE=B2\ \@=CF=B5)\) - 5\= > =CE=B2\ \@=CF=B5)\) - 2\ > \ > \[ExponentialE]\^\(\(3\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + > =CE=B3)\)\ \((\(-5\) - 4\ =CE=B3 - > 5\ =CE=B2\ \@=CF=B5 + 14\ > =CE=B2\ =CE=B3\ \@=CF=B5)\) - 5\ =CE=B2= > \ \@=CF=B5 + 19\ =CE=B2\ > =CE=B3\ \@=CF=B5 - > 2\ =CE=B2\ =CE=B3\^2\ \@=CF=B5 + 2\ =CE=B3\= > =CF=B5 - 2\ =CE=B3\^2\ =CF=B5 > + 6\ =CE=B2\ > \^2\ =CE=B3\^2\ =CF=B5 + \[ExponentialE]\^\(\(4\ > =CE=B3\ \@=CF=B5\)\/\@Da\)\ \(( > 5\ =CE=B2\ \@=CF=B5 + =CE=B3\ \((9 - = > 19\ > =CE=B2\ \@=CF=B5 + > 2\ =CF=B5)\) + =CE=B3\^2\ \((\(-3\)= > + > 2\ > =CE=B2\ \@=CF=B5 - 2\ =CF=B5 + 6\ = > =CE=B2\^2\ > =CF=B5)\))\) - 2\ \[ExponentialE]\^\(\(2\ =CE=B3\= > \@=CF=B5\) > \/\@Da\ > \)\ \((\(-10\) + =CE=B3\ \((11 + 2\ =CF=B5)\) + > =CE=B3\^2\ \((\(-7\) + \((\(-2\) + 6\ > =CE=B2\^2)\)\ =CF=B5)\))\))\) + 24\ > Da\^2\ \((\(-1\) + \ > \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\^2\ \((1 - 2\ =CE=B3 + = > =CE=B3\^2 + 4\ =CE=B2 > \ \@=CF=B5 - > 8\ =CE=B2\ =CE=B3\ \@=CF=B5 + > 4\ =CE=B2\ =CE=B3\^2\ \@=CF=B5 - 3\ =CF=B5 + 4\ = > =CE=B2\^2\ =CF=B5 - 8\ =CE=B2 > \^2\ =CE=B3\ =CF=B5 \ > + 3\ =CE=B3\^2\ =CF=B5 + 4\ =CE=B2\^2\ =CE=B3\^2\ =CF=B5 - 8\ =CE=B2\ =CE= > =B3\ =CF=B5\^\(3/2\) + 8\ =CE=B2\ =CE=B3\^2\ \ > =CF=B5\^\(3/2\) + =CE=B3\^2\ =CF=B5\^2 + 2\ \[ExponentialE]\^\(\(=CE=B3\ \@= > =CF=B5\)\/\@Da\)\ \ > ((1 + \ > \((3 - 4\ =CE=B2\^2)\)\ =CF=B5 + =CE=B3\ \((\(-2\) + 8\ \((\(-1\) + =CE=B2\= > ^2)\)\ =CF=B5)\) + =CE=B3 > \^2\ \ > \((1 + \((5 - 4\ > =CE=B2\^2)\)\ =CF=B5 + =CF=B5\^2)\))\) + \ > [ExponentialE]\^\ > \(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((1 - 4\ =CE=B2\ \@=CF=B5 - 3\ =CF=B5 += > 4\ =CE=B2\^2\ =CF=B5 + =CE=B3\ \((\ > (-2\) \ > - 8\ =CE=B2\^2\ =CF=B5 + 8\ =CE=B2\ \@=CF=B5\ \((1 + =CF=B5)\))\) + =CE=B3\= > ^2\ \((1 + 3\ =CF=B5 + 4\ =CE=B2 > \^2\ =CF=B5 + =CF=B5\ > \^2 - 4\ =CE=B2\ \@=CF=B5\ \((1 + 2\ =CF=B5)\))\))\))\) + > 4\ Da\^\(3/2\)\ \((\(-1\) + \ > [ExponentialE]\^\ > \(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\)\ \@=CF=B5\ \((9 - = > 6\ > =CE=B3 - 3\ =CE=B3\^2 + 18\ =CE=B2\= > \@=CF=B5 - > 18\ > =CE=B2\ =CE=B3\^2\ \@=CF=B5 + 4\ = > =CF=B5 - 17\ =CE=B3\ =CF=B5 > + 24\ > =CE=B2\^2\ =CE=B3\ =CF=B5 + > =CE=B3\^2\ =CF=B5 - 24\ =CE=B2\^2\ = > =CE=B3\^2\ =CF=B5 - > 12\ > =CE=B2\ =CE=B3\^2\ > =CF=B5\^\(3/2\) + \[ExponentialE]\^\ > (\(3\ \ > =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((9 - 18\ =CE=B2\ \@=CF=B5 + 4\ > =CF=B5 + =CE=B3\ \((\(-6\) + \((\(-17\)= > + > 24\ =CE=B2\^2)\ > \)\ =CF=B5)\) + =CE=B3\^2\ \((\(-3\) + =CF=B5 - 24\ =CE=B2\^2\ =CF=B5 + 6\ = > =CE=B2\ \@=CF=B5\ \((3 + 2\ > =CF=B5)\))\))\) - \[ExponentialE]\^\ > (\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\)\ \((9 + 54\ =CE=B2\ \@=CF=B5 + 4\ =CF=B5 + =CE=B3\ \((\(= > -30\) - 96\ =CE=B2\ \@=CF=B5 - > 17\ > =CF=B5 + 24\ =CE=B2\^2\ =CF=B5)\) += > =CE=B3\^2\ \ > ((21 + > 25\ =CF=B5 - 24\ =CE=B2\^2\ =CF=B5 = > + 6\ > =CE=B2\ \@=CF=B5\ \((7 + 2\ =CF=B5)\))\= > ))\) + \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-9\) + 54\ > =CE=B2\ \@=CF=B5 - > 4\ =CF=B5 + =CE=B3\ \((30 - 96\ =CE= > =B2\ \@=CF=B5 + > 17\ =CF=B5 - \ > 24\ =CE=B2\^2\ =CF=B5)\) + =CE=B3\^2\ \((\(-21\) - 25\ =CF=B5 + 24\ =CE=B2\= > ^2\ =CF=B5 + 6\ =CE=B2\ \@=CF=B5\ \ > ((7 + > 2\ =CF=B5)\))\))\))\) - 2\ \@Da\ \ > ((\(-1\) \ > + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\)= > \^4\ \@=CF=B5\ \ > ((1 - \ > =CE=B3 + 3\ =CE=B2\ \@=CF=B5 - 3\ =CE=B2\ =CE=B3\ \@=CF=B5 - 2\ =CF=B5 + 2\= > =CE=B2\^2\ =CF=B5 - 3\ > =CE=B3\ =CF=B5 - 2\ =CE=B2\^2\ =CE=B3\ =CF= > =B5 - 5\ =CE=B2\ =CE=B3\ =CF=B5\^ > \(3/2\) - \ > \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B2\ \@=CF= > =B5 - 2\ =CF=B5 + > 2\ =CE=B2\^2\ =CF=B5 + =CE=B3\ \((1 + > > 7\ =CF=B5 - 2\ =CE=B2\^2\ > =CF=B5 + =CE=B2\ \@=CF=B5\ \((\(-1\) + 5\ =CF= > =B5)\))\))\) + > \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((1 + =CE=B2\ \@=CF=B5= > + 2\ =CF=B5 - 2\ > =CE=B2\^2\ =CF=B5 + =CE=B3\ \((\(-1\) - 7\ = > =CF=B5 + 2\ =CE=B2\^2\ > =CF=B5 + =CE=B2\ \ > \@=CF=B5\ \((\(-1\) + 5\ =CF=B5)\))\))\) + \[ExponentialE]\^\(\(3\ > =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((1 - 3\ = > =CE=B2\ \@=CF=B5 > - 2\ =CF=B5 \ > + 2\ =CE=B2\^2\ =CF=B5 + =CE=B3\ \((\(-1\) - 3\ =CF=B5 - 2\ =CE=B2\^2\ > =CF=B5 + =CE=B2\ \@=CF=B5\ \((3 + 5\ = > =CF=B5)\))\))\)) > \))\)\ =CF=83\ > \_1)\) + \((\(-1\) + =CE=B3)\)\^2\ =CF=B5\ \((\((1 - =CE=B3)\)\ \((6720\ > Da\^3\ \((\(-1\) + \ > \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\^4\ \@=CF=B5 - 17\ \((\(= > -1\) + > =CE=B3)\)\^6\ \(( > 1 + \[ExponentialE]\^\(\(2\ =CE=B3\ \ > \@=CF=B5\)\/\@Da\)\ \((1 - =CE=B2\ \@=CF=B5)\) + =CE=B2\ \@=CF=B5)\)\^2\ \@= > =CF=B5 - 153\ \@Da\ \((\ > (-1\) + \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\= > )\^5\ \((\ > (-1\) + \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B2\ \@= > =CF=B5)\) - =CE=B2\ > \@=CF=B5)\)\ \ > =CF=B5 - 840\ Da\^\(5/2\)\ \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF= > =B5\)\/\@Da > \))\)\^3\ > \ \((\(-4\) - 8\ =CE=B2\ \@=CF=B5 - 5\ =CF=B5 + =CE=B3\ \((4 + 8\ =CE=B2\ \= > @=CF=B5 + 9\ =CF=B5)\) + \ > \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-4\) + 8\ > =CE=B2\ \@=CF=B5 - 5\ =CF=B5 + =CE=B3\ \(= > (4 - > 8\ =CE=B2\ \@=CF=B5 + 9\ =CF=B5)\))\))\) + = > 84\ Da\^2\ > \ > \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)\^2\ \((\(-1\= > ) + =CE=B3) > \)\ \ > \@=CF=B5\ \((\(-3\) - 60\ =CE=B2\ \@=CF=B5 + =CE=B3\ \((43 + 100\ =CE=B2\ \= > @=CF=B5 + 25\ =CF=B5)\) + > 2\ \[ExponentialE]\^\(\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\)\ \((\(-57\) + =CE=B3\ \((57 + > 25\ =CF=B5)\))\) + \[ExponentialE]\^ > \(\(2\ \ > =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-3\) + 60\ =CE=B2\ \@=CF=B5 + =CE=B3\ \((4= > 3 - 100\ =CE=B2\ \@=CF=B5 + > 25\ =CF=B5)\))\ > \))\) + 4\ Da\ \((\(-1\) + =CE=B3)\)\^3\ \@=CF=B5\ \((112 - 7\ > =CE=B3 - 224\ \[ExponentialE]\^\ > (\(3\ > =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\)= > + =CE=B3) > \)\ \((\ > \(-1\) + =CE=B2\ \@=CF=B5)\) + 224\ \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)= > \/\@Da\)\ \((\ > (-1\) + \ > =CE=B3)\)\ \((1 + =CE=B2\ \@=CF=B5)\) + 112\ =CE=B2\ \@=CF=B5 + 98\ =CE=B2\= > =CE=B3\ \@=CF=B5 + 97\ =CF=B5 - 97\ > =CE=B3\ =CF=B5 + 105\ =CE=B2\^2\ =CE=B3\ = > =CF=B5 + \ > \[ExponentialE]\^\(\(4\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((112 - 112\ =CE=B2\ \= > @=CF=B5 + 97\ =CF=B5 > + =CE=B3\ \ > \((\(-7\) - 98\ =CE=B2\ \@=CF=B5 - 97\ =CF=B5 + 105\ =CE=B2\^2\ > =CF=B5)\))\) - 2\ \[ExponentialE]\^\ > (\(2\ \ > =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-112\) + 97\ =CF=B5 + =CE=B3\ \((7 + \((\(= > -97\) + 105\ =CE=B2 > \^2)\)\ > =CF=B5)\))\))\) + 28\ Da\^\(3/ > 2\)\ \((\(-1\) + \[ExponentialE]\^\ > (\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\)\^2\ \((15 - 15\ =CE=B3 + 45\ = > =CE=B2\ \@=CF=B5 - > 45\ =CE=B2\ =CE=B3\ \ > \@=CF=B5 - 82\ =CF=B5 + 30\ =CE=B2\^2\ =CF=B5 - 8\ =CE=B3\ =CF=B5 - 30\ =CE= > =B2\^2\ =CE=B3\ =CF=B5 - 90\ =CE=B2\ =CE=B3\ =CF=B5\^ > \(3/ > 2\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@= > Da\)\ > \((15 \ > - 15\ =CE=B2\ \@=CF=B5 + 82\ =CF=B5 - 30\ =CE=B2\^2\ =CF=B5 + =CE=B3\ \((\(= > -15\) + 15\ =CE=B2\ \((1 - 6\ > =CF=B5)\)\ \ > \@=CF=B5 - 172\ =CF=B5 + 30\ =CE=B2\^2\ =CF=B5)\))\) + \[ExponentialE]\^\(\= > (3\ > =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((15 -= > 45\ =CE=B2 > \ \@=CF=B5 \ > - 82\ =CF=B5 + 30\ =CE=B2\^2\ =CF=B5 + =CE=B3\ \((\(-15\) - 8\ =CF=B5 - 30\= > =CE=B2\^2\ =CF=B5 + > 45\ =CE=B2\ \@=CF=B5\ \((1 + 2\ =CF=B5)= > \))\))\) + > \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \(( > 15 + 15\ =CE=B2\ \@=CF=B5 + 82\ =CF= > =B5 - 30\ =CE=B2 > \^2\ > =CF=B5 + =CE=B3\ \((\(-15\) - 172\ = > =CF=B5 + > 30\ =CE=B2\^2\ > \ =CF=B5 + 15\ =CE=B2\ \@=CF=B5\ \((\(-1\) + 6\ =CF=B5)\))\))\))\))\)\ =CE= > =BB - 140\ \((144\ > Da\^3\ \((\(-1\) + \[ExponentialE] > \^\(\(=CE=B3\ > \ \@=CF=B5\)\/\@Da\))\)\^4\ \@=CF=B5 - \((\(-1\) + =CE=B3)\)\^6\ \(( > 1 + \[ExponentialE]\^\(\(2\ =CE=B3\ \ > \@=CF=B5\)\/\@Da\)\ \((1 - =CE=B2\ \@=CF=B5)\) + =CE=B2\ \@=CF=B5)\)\^2\ \@= > =CF=B5 - 8\ \@Da\ \((\ > (-1\) + \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\= > )\^5\ \((\ > (-1\) + \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B2\ \@= > =CF=B5)\) - =CE=B2\ > \@=CF=B5)\)\ \ > =CF=B5 + 24\ Da\^2\ \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@= > Da\))\) > \^2\ \ > \((\(-1\) + > =CE=B3)\)\ \@=CF=B5\ \((\(-5\)\ =CE=B2\ \@= > =CF=B5 + =CE=B3\ \((3 > + 8\ =CE=B2\ > \ \@=CF=B5 + 2\ =CF=B5)\) + 2\ \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@D= > a\)\ \((\(-5\) > + =CE=B3\ \ > \((5 + 2\ =CF=B5)\))\) + \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)= > \ \((5\ =CE=B2\ > \@=CF=B5 + \ > =CE=B3\ \((3 - > 8\ =CE=B2\ \@=CF=B5 + 2\ =CF=B5)\))= > \))\) - > 24\ \ > Da\^\(5/2\)\ \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)= > \^3\ \ > ((\(-3\ > \) - 6\ =CE=B2\ \@=CF=B5 - 4\ =CF=B5 + =CE=B3\ \((3 + 6\ > =CE=B2\ \@=CF=B5 + 7\ =CF=B5)\) + \[Exp= > onentialE] > \^\(\(=CE=B3\ > \ \@=CF=B5\)\/\@Da\)\ \((\(-3\) + 6\ =CE=B2\ \@=CF=B5 - > 4\ =CF=B5 + =CE=B3\ \((3 - 6\ =CE=B2\ \@=CF= > =B5 + 7\ =CF=B5)\)) > \))\) + \ > 2\ Da\ \((\(-1\) + =CE=B3)\)\^3\ \@=CF=B5\ \((9 - 3\ =CE=B3 - 18\ \[Exponen= > tialE]\^\ > (\(3\ =CE=B3\ \ > \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B3)\)\ \((\(-1\) + =CE=B2\ \@=CF=B5)\) = > + 18\ \ > \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B3)\)\ \((= > 1 + =CE=B2\ \@=CF=B5) > \) + > 9\ =CE=B2\ \@=CF=B5 + 3\ =CE=B2\ =CE=B3= > \ \@=CF=B5 + 8\ =CF=B5 - > 8\ =CE=B3\ =CF=B5 \ > + 6\ =CE=B2\^2\ =CE=B3\ =CF=B5 + \[ExponentialE]\^\(\(4\ =CE=B3\ \@=CF=B5\)= > \/\@Da\)\ \((9 - 9\ =CE=B2 > \ \@=CF=B5 \ > + 8\ =CF=B5 + =CE=B3\ \((\(-3\) - 3\ =CE=B2\ \@=CF=B5 - 8\ =CF=B5 + 6\ =CE= > =B2\^2\ > =CF=B5)\))\) - > 2\ \[ExponentialE]\^\(\(2\ =CE=B3\ > \@=CF=B5\)\/\ > \@Da\)\ \((\(-9\) + 8\ =CF=B5 + =CE=B3\ \((3 + \((\(-8\) + 6\ > =CE=B2\^2)\)\ =CF=B5)\))\))\) + 12\ D= > a\^ > \(3/ > 2\)\ \((\(-1\) + \[ExponentialE] > \^\(\(=CE=B3\ > \ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\)\^2\ \((1 - =CE=B3 + 3\ =CE= > =B2\ \@=CF=B5 - 3\ =CE=B2\ =CE=B3 > \ \@=CF=B5 \ > - 6\ =CF=B5 + 2\ =CE=B2\^2\ =CF=B5 + =CE=B3\ =CF=B5 - 2\ =CE=B2\^2\ =CE=B3\= > =CF=B5 - 5\ =CE=B2\ =CE=B3\ =CF=B5\^\(3/ > 2\) - \[ExponentialE]\^\(\(=CE=B3\ \@= > =CF=B5\) > \/\@Da\ > \)\ \((\(-1\) + =CE=B2\ \@=CF=B5 - 6\ =CF=B5 + 2\ =CE=B2\^2\ =CF=B5 + =CE= > =B3\ \((1 + 11\ =CF=B5 - 2\ =CE=B2 > \^2\ =CF=B5 + > =CE=B2\ \@=CF=B5\ \((\(-1\) + > 5\ =CF=B5)\))\))\) + \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((1 + =CE=B2\ \@=CF=B5= > + 6\ =CF=B5 - 2\ =CE=B2 > \^2\ =CF=B5 + > =CE=B3\ \((\(-1\) - > 11\ =CF=B5 + 2\ =CE=B2\^2\ =CF=B5 + =CE= > =B2\ \@=CF=B5\ \((\ > (-1\) + \ > 5\ =CF=B5)\))\))\) + \[ExponentialE]\^\(\(3\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \(= > (1 - 3\ =CE=B2\ > \@=CF=B5 - > 6\ =CF=B5 + 2\ =CE=B2\^2\ =CF=B5 + = > =CE=B3\ \((\(-1\) > + =CF=B5 - > 2\ =CE=B2\^2\ =CF=B5 + > =CE=B2\ \@=CF=B5\ \((3 + 5\ > =CF=B5)\))\))\))\))\)\ =CF=83\_1)\)= > )\)/\ > ((140\ \ > \@=CF=B5\ \((24\ Da\^2\ \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)= > \/\@Da\))\) > \^2\ \ > \@=CF=B5 + \((\(-1\) + =CE=B3)\)\^4\ \((\(-1\) + \[ExponentialE]\^\(\(2\ = > =CE=B3\ \@=CF=B5\) > \/\@Da\ > \)\ \((\(-1\) + =CE=B2\ \@=CF=B5)\) - =CE=B2\ \@=CF=B5)\)\ \@=CF=B5 - > 12\ Da\ \((\(-1\) + =CE=B3)\)\ \((\ > (-1\) - 2\ > \ \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B3)\) + \ > [ExponentialE]\^\ > \(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\)\ \((\(-1\) + =CE=B2\ =CE=B3\ \@=CF=B5)\) = > - =CE=B2\ > =CE=B3\ \@=CF=B5)\)\ \@=CF=B5 + 4\ \@Da\ \((\= > (-1\) + \ > \[ExponentialE]\^\(\(2\ =CE=B3\ \@=CF=B5\)\/\@Da\))\)\ \((\(-1\) + =CE=B3)\= > )\^3\ =CF=B5 - > 12\ \ > Da\^\(3/2\)\ \((\(-1\) + \[ExponentialE]\^\(\(=CE=B3\ \@=CF=B5\)\/\@Da\))\)= > \ \((\ > (-1\) \ > - 2\ =CE=B2\ \@=CF=B5 + =CE=B3\ \((1 + 2\ =CE=B2\ \@=CF=B5 + =CF=B5)\) + \[= > ExponentialE]\^\(\(=CE=B3\ \ > \@=CF=B5\)\/\@Da\)\ \((\(-1\) + 2\ =CE=B2\ \@=CF=B5 + =CE=B3\ \((1 - 2\ =CE= > =B2\ \@=CF=B5 + \ > =CF=B5)\))\))\))\)\^2)\))\)\) Select the cells, press Ctrl+Shift+I (simultanesouly!) so that Mathematica code appeared in InputForm. Avoid special characters like greek letters. Copy as Plain Text is preferable. Then paste the code to the post and send the message to MathGroup. Follow these simple advice we can see your code in a more readable format that it is now... Dimitris