Re: ideas please!
- To: mathgroup at smc.vnet.net
- Subject: [mg78894] Re: [mg78850] ideas please!
- From: Daniel Lichtblau <danl at wolfram.com>
- Date: Thu, 12 Jul 2007 05:17:19 -0400 (EDT)
- References: <200707111009.GAA05013@smc.vnet.net>
dimitris wrote: > Hello. > > In[201]:= > (Plot[#1[Log[1 - (I + z)/((-(1/3) + I) + (1/6)*(1 + > I*Sqrt[3])*((1/2)*(29 - 3*Sqrt[93]))^(1/3) + > (1 - I*Sqrt[3])/(3*2^(2/3)*(29 - 3*Sqrt[93])^(1/3)))]], {z, > 0, 5}] & ) /@ {Re, Im}; > > As it is clear from the graph the Imaginary part has a jump > discontinuity somewhere near z=1. > Can somebody point me out a way to detect exactly its position? > No matter what I have tried I had no success. > > Dimitris > Solve for where argument of log intersects log branch cut. Reduce will handle this task. logexpr = Log[1 - (I + z)/((-(1/3) + I) + (1/6)*(1 + I*Sqrt[3])*((1/2)*(29 - 3*Sqrt[93]))^(1/3) + (1 - I*Sqrt[3])/(3*2^(2/3)*(29 - 3*Sqrt[93])^(1/3)))]; arg = First[logexpr]; repart = ComplexExpand[Re[arg]]; impart = ComplexExpand[Im[arg]]; InputForm[crossing = Reduce[{repart<0, impart==0, 0<=z<=5}, z]] Out[6]//InputForm= z == (-2*2^(1/3) - Root[256 - 13424*#1^3 + #1^6 & , 1, 0] + 4*Root[4 - 58*#1^3 + #1^6 & , 1, 0])/(2*2^(1/3)*Sqrt[3] - Sqrt[3]*Root[256 - 13424*#1^3 + #1^6 & , 1, 0] - 12*Root[4 - 58*#1^3 + #1^6 & , 1, 0]) N[crossing] Out[7]= z == 1.12214 Daniel Lichtblau Wolfram Research
- References:
- ideas please!
- From: dimitris <dimmechan@yahoo.com>
- ideas please!