how to simplify n write in mathtype
- To: mathgroup at smc.vnet.net
- Subject: [mg78881] how to simplify n write in mathtype
- From: bhargavi <bhargavi.math at gmail.com>
- Date: Thu, 12 Jul 2007 05:10:26 -0400 (EDT)
hi,tx for ur suggestion i m doing the same thing which you suggested that is Selected the cells, as Ctrl+Shift+I (simultanesouly) n coped as a plain text, nowplz suggest me how to convert this expression into mathtype.its very huge one.i can't make up the begning and ending of the brackets.n can we convert mathematica note book into pdf file? is this expression is ok? if not plz suggest me. bhargvi. so my expression is, \[Lambda]/(Subscript[\[Sigma], 1] - (-420*Da*((240*Da^(7/2)*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]))^3* (1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*\[Epsilon]*\ [Eta] + (-1 + \[Gamma])^5*\[Gamma]* (-2*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \[Gamma]) + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*\[Gamma]*(-1 + \ [Beta]*Sqrt[\[Epsilon]]) - \[Gamma]*(1 + \[Beta]*Sqrt[\[Epsilon]]))*(-1 + E^((2*\ [Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])* (-1 + \[Beta]*Sqrt[\[Epsilon]]) - \[Beta]*Sqrt[\ [Epsilon]])*\[Epsilon]^(3/2)*\[Eta] - 96*Da^3*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]))^2*Sqrt[\[Epsilon]]* ((3 + 4*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]) + 3*E^((2*\ [Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]))*(-1 + \[Gamma])*\[Eta] - 5*(-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*\ [Beta]*(-1 + \[Gamma])*Sqrt[\[Epsilon]]* \[Eta] + \[Epsilon]*(-1 + \[Gamma] + \[Gamma]*\[Eta] + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])* (-1 + \[Gamma] + \[Gamma]*\[Eta]) + E^((\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])* (2 + \[Gamma]*(-2 + 3*\[Eta])))) + 2*Da^(3/2)* (-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \ [Gamma])*\[Epsilon]* (14 - 18*\[Gamma] - 6*\[Gamma]^2 + 10*\[Gamma]^3 + 28*\ [Beta]*Sqrt[\[Epsilon]] - 12*\[Beta]*\[Gamma]*Sqrt[\[Epsilon]] - 60*\[Beta]*\ [Gamma]^2*Sqrt[\[Epsilon]] + 44*\[Beta]*\[Gamma]^3*Sqrt[\[Epsilon]] + 2*\[Epsilon] - 20*\ [Gamma]*\[Epsilon] + 48*\[Beta]^2*\[Gamma]*\[Epsilon] + 10*\[Gamma]^2*\[Epsilon] - 96*\[Beta]^2*\[Gamma]^2*\ [Epsilon] + 8*\[Gamma]^3*\[Epsilon] + 48*\[Beta]^2*\[Gamma]^3*\[Epsilon] - 24*\[Beta]*\[Gamma]^2*\ [Epsilon]^(3/2) + 24*\[Beta]*\[Gamma]^3*\[Epsilon]^(3/2) + 7*\[Eta] - 51*\ [Gamma]*\[Eta] + 87*\[Gamma]^2*\[Eta] - 43*\[Gamma]^3*\[Eta] - 30*\[Beta]*\[Gamma]*Sqrt[\[Epsilon]]* \[Eta] + 66*\[Beta]*\[Gamma]^2*Sqrt[\[Epsilon]]* \[Eta] - 36*\[Beta]*\[Gamma]^3*Sqrt[\[Epsilon]]*\[Eta] - 4* \[Gamma]*\[Epsilon]*\[Eta] + 14*\[Gamma]^2*\[Epsilon]*\[Eta] - 14*\[Gamma]^3*\[Epsilon]*\ [Eta] - 4*\[Beta]*\[Gamma]^3*\[Epsilon]^(3/2)*\[Eta] + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-14 + 84*\ [Beta]*Sqrt[\[Epsilon]] - 2*\[Epsilon] + 11*\[Eta] + \[Gamma]^2*(-90 + 96*\[Beta]^2*\[Epsilon] + 6* \[Beta]*Sqrt[\[Epsilon]]* (34 + 4*\[Epsilon] - 11*\[Eta]) + 171*\[Eta] - 2*\ [Epsilon]*(29 + \[Eta])) + \[Gamma]*(66 - 48*\[Beta]^2*\[Epsilon] - 99*\[Eta] + 4*\ [Epsilon]*(5 + \[Eta]) + 6*\[Beta]* Sqrt[\[Epsilon]]*(-38 + 5*\[Eta])) + \[Gamma]^3*(38 - 48*\[Beta]^2*\[Epsilon] + \[Epsilon]* (40 - 6*\[Eta]) - 83*\[Eta] + 4*\[Beta]*Sqrt[\ [Epsilon]]*(-15 + \[Epsilon]*(-6 + \[Eta]) + 9*\[Eta]))) - E^((\ [Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])* (14 + 84*\[Beta]*Sqrt[\[Epsilon]] + 2*\[Epsilon] - 11*\ [Eta] + \[Gamma]^2*(90 - 96*\[Beta]^2*\[Epsilon] + 6*\ [Beta]*Sqrt[\[Epsilon]]*(34 + 4*\[Epsilon] - 11*\[Eta]) - 171*\[Eta] + 2*\[Epsilon]*(29 + \[Eta])) + \[Gamma]*(-66 + 48*\[Beta]^2*\[Epsilon] + 99*\[Eta] - 4*\ [Epsilon]*(5 + \[Eta]) + 6*\[Beta]* Sqrt[\[Epsilon]]*(-38 + 5*\[Eta])) + \[Gamma]^3*(-38 + 48*\[Beta]^2*\[Epsilon] + 83* \[Eta] + \[Epsilon]*(-40 + 6*\[Eta]) + 4*\[Beta]*Sqrt[\ [Epsilon]]*(-15 + \[Epsilon]*(-6 + \[Eta]) + 9*\[Eta]))) + E^((3*\ [Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])* (14 - 28*\[Beta]*Sqrt[\[Epsilon]] + 2*\[Epsilon] + 7*\ [Eta] + \[Gamma]*(-18 + 48*\[Beta]^2* \[Epsilon] - 51*\[Eta] - 4*\[Epsilon]*(5 + \[Eta]) + 6* \[Beta]*Sqrt[\[Epsilon]]* (2 + 5*\[Eta])) + \[Gamma]^2*(-6 - 96*\[Beta]^2*\ [Epsilon] + 6*\[Beta]*Sqrt[\[Epsilon]]* (10 + 4*\[Epsilon] - 11*\[Eta]) + 87*\[Eta] + 2*\ [Epsilon]*(5 + 7*\[Eta])) + \[Gamma]^3*(10 + 48*\[Beta]^2*\[Epsilon] + \[Epsilon]*(8 - 14*\[Eta]) - 43*\[Eta] + 4*\[Beta]* Sqrt[\[Epsilon]]*(-11 + \[Epsilon]*(-6 + \[Eta]) + 9*\ [Eta])))) + 2*Da*(-1 + \[Gamma])^2*Sqrt[\[Epsilon]]*((-1 + E^((\ [Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^2* (1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \ [Gamma])^3*\[Eta] - (-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^3* (1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*\[Beta]*(-1 + \[Gamma])^3*Sqrt[\[Epsilon]]* \[Eta] + (-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]))^2*\[Gamma]*\[Epsilon]^2* (1 + 2*\[Gamma]*(-1 + 6*\[Beta]^2 - \[Eta]) + \ [Gamma]^2*(1 + 2*\[Beta]^2*(-6 + \[Eta]) + 2*\[Eta])) - (-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]))*\[Beta]*\[Epsilon]^(3/2)* (-2 + 20*\[Gamma] - 10*\[Gamma]^2 - 8*\[Gamma]^3 + 5*\ [Gamma]*\[Eta] - 16*\[Gamma]^2*\[Eta] + 15*\[Gamma]^3*\[Eta] - 2*E^((\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da])*(-1 + \[Gamma])^2* (-2 + \[Gamma]*(16 + 5*\[Eta])) + E^((2*\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])* (-2 + 5*\[Gamma]*(4 + \[Eta]) - 2*\[Gamma]^2*(5 + 8*\ [Eta]) + \[Gamma]^3* (-8 + 15*\[Eta]))) + \[Epsilon]*(3 + 5*\[Gamma] - 7*\ [Gamma]^2 - \[Gamma]^3 - 2*\[Eta] + 11*\[Gamma]*\[Eta] - 22*\[Gamma]^2*\[Eta] + 15*\[Gamma]^3* \[Eta] + 2*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \ [Gamma])^2*(-8 + \[Gamma]* (-6 + 5*\[Eta])) + 2*E^((3*\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da])*(-1 + \[Gamma])^2* (-8 + \[Gamma]*(-6 + 5*\[Eta])) + 2*E^((2*\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])* (13 + \[Gamma]^2*(23 - 6*\[Eta]) + 2*\[Eta] - \ [Gamma]*(25 + 3*\[Eta]) + \[Gamma]^3* (-11 + 9*\[Eta])) + E^((4*\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da])* (3 - 2*\[Eta] + \[Gamma]*(5 + 11*\[Eta]) + \ [Gamma]^3*(-1 + 15*\[Eta]) - \[Gamma]^2* (7 + 22*\[Eta])))) + 48*Da^(5/2)* (-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \ [Gamma])* (2*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^2* (1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*\[Gamma]*\ [Epsilon]^2 + (1 + 4*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]) + 4*E^((2*\ [Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]) + E^((3*\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]))*(-1 + \[Gamma])*\[Eta] - 2*(-3 - E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]) + E^((2*\ [Gamma]*Sqrt[\[Epsilon]])/Sqrt[ Da]) + 3*E^((3*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*\ [Beta]*(-1 + \[Gamma])* Sqrt[\[Epsilon]]*\[Eta] - 4*(-1 + E^((\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da]))*\[Beta]* \[Epsilon]^(3/2)*(-1 + \[Gamma] + \[Gamma]*\[Eta] + E^((2*\ [Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])* (-1 + \[Gamma] + \[Gamma]*\[Eta]) + E^((\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])* (2 + \[Gamma]*(-2 + 3*\[Eta]))) + (1 + E^((\ [Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))* \[Epsilon]*(-2 + 2*\[Gamma] + 2*\[Eta] - 5*\[Beta]^2*\ [Eta] + 5*\[Beta]^2*\[Gamma]*\[Eta] + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-2 + (2 - 5*\ [Beta]^2)*\[Eta] + \[Gamma]* (2 + 5*\[Beta]^2*\[Eta])) - 2*E^((\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])* (-2 + (2 - 5*\[Beta]^2)*\[Eta] + \[Gamma]*(2 + 5*(-1 + \ [Beta]^2)*\[Eta])))) + Sqrt[Da]*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \[Gamma])^4*\[Epsilon]* ((-(1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]) + E^((2*\ [Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]) + E^((3*\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da])))* (1 - 4*\[Gamma] + 3*\[Gamma]^2)*\[Eta] + (-1 + E^((\ [Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))* \[Beta]*(-1 + \[Gamma])*(-1 + 5*\[Gamma] + E^((2*\ [Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])* (-1 + 5*\[Gamma]) + E^((\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da])*(-2 + 6*\[Gamma]))* Sqrt[\[Epsilon]]*\[Eta] + (-1 + E^((\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da]))* (1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^2*\[Beta]*\ [Gamma]*\[Epsilon]^(3/2)* (-2 + \[Gamma]*(2 + 5*\[Eta])) - (1 + E^((\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da]))*\[Epsilon]* (-1 + \[Gamma]^2 - 2*\[Beta]^2*\[Gamma]*\[Eta] + 5*\ [Gamma]^2*\[Eta] + 2*\[Beta]^2*\[Gamma]^2*\[Eta] - 2*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \ [Gamma])*(1 + \[Gamma]* (-1 + 2*(-2 + \[Beta]^2)*\[Eta])) + E^((2*\ [Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])* (-1 - 2*\[Beta]^2*\[Gamma]*\[Eta] + \[Gamma]^2*(1 + (5 + 2*\[Beta]^2)*\[Eta])))) + 4*Da^2*Sqrt[\[Epsilon]]*(6 - 18*\[Gamma] + 18*\[Gamma]^2 - 6*\ [Gamma]^3 + 24*\[Beta]*Sqrt[\[Epsilon]] - 72*\[Beta]*\[Gamma]*Sqrt[\ [Epsilon]] + 72*\[Beta]*\[Gamma]^2*Sqrt[\[Epsilon]] - 24*\[Beta]*\[Gamma]^3*Sqrt[\[Epsilon]] - 14*\[Epsilon] + 24* \[Beta]^2*\[Epsilon] + 6*\[Gamma]*\[Epsilon] - 72*\[Beta]^2*\[Gamma]*\[Epsilon] + 30*\[Gamma]^2*\[Epsilon] + 72*\[Beta]^2*\[Gamma]^2*\[Epsilon] - 22*\[Gamma]^3*\[Epsilon] - 24*\[Beta]^2*\[Gamma]^3*\ [Epsilon] - 48*\[Beta]*\[Gamma]*\[Epsilon]^(3/2) + 96*\[Beta]*\[Gamma]^2*\[Epsilon]^(3/2) - 48*\[Beta]*\ [Gamma]^3*\[Epsilon]^(3/2) + 6*\[Gamma]^2*\[Epsilon]^2 - 6*\[Gamma]^3*\[Epsilon]^2 - 27*\[Eta] + 81*\[Gamma]*\[Eta] - 81*\[Gamma]^2*\[Eta] + 27*\[Gamma]^3*\[Eta] - 24*\[Beta]*Sqrt[\[Epsilon]]*\[Eta] + 48*\[Beta]*\[Gamma]*Sqrt[\[Epsilon]]*\[Eta] - 24*\[Beta]*\[Gamma]^2*Sqrt[\[Epsilon]]*\[Eta] + 15*\[Gamma]* \[Epsilon]*\[Eta] - 24*\[Beta]^2*\[Gamma]*\[Epsilon]* \[Eta] - 33*\[Gamma]^2*\[Epsilon]*\[Eta] + 48*\[Beta]^2*\ [Gamma]^2*\[Epsilon]*\[Eta] + 18*\[Gamma]^3*\[Epsilon]*\[Eta] - 24*\[Beta]^2*\[Gamma]^3*\ [Epsilon]*\[Eta] + \[Gamma]^3*\[Epsilon]^2*\[Eta] + 4*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \ [Gamma])^2*(-2*(-7 + \[Gamma])*\[Epsilon] - 6*\[Beta]^2*\[Epsilon]*(4 + \[Gamma]*(-4 + \[Eta])) + 6*\ [Beta]*Sqrt[\[Epsilon]]* (\[Gamma]*(2 + 4*\[Epsilon] - 5*\[Eta]) + 2*(-1 + \ [Eta])) + 3*(2 - 5*\[Gamma])*\[Eta]) - 4*E^((3*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \ [Gamma])^2*(2*(-7 + \[Gamma])*\[Epsilon] + 6*\[Beta]^2*\[Epsilon]*(4 + \[Gamma]*(-4 + \[Eta])) + 6*\ [Beta]*Sqrt[\[Epsilon]]* (\[Gamma]*(2 + 4*\[Epsilon] - 5*\[Eta]) + 2*(-1 + \ [Eta])) + 3*(-2 + 5*\[Gamma])* \[Eta]) + E^((4*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(6 - 14*\[Epsilon] + 24*\[Beta]^2*\[Epsilon] + 24*\[Beta]*Sqrt[\[Epsilon]]*(-1 + \[Eta]) - 27*\[Eta] + 3*\[Gamma]^2*(6 + 2*\[Epsilon]^2 + \[Epsilon]*(10 - 11*\ [Eta]) - 8*\[Beta]*Sqrt[\[Epsilon]]* (3 + 4*\[Epsilon] - \[Eta]) - 27*\[Eta] + 8*\[Beta]^2*\ [Epsilon]*(3 + 2*\[Eta])) - 3*\[Gamma]*(6 - 8*\[Beta]*Sqrt[\[Epsilon]]*(3 + 2*\ [Epsilon] - 2*\[Eta]) - 27*\[Eta] + 8* \[Beta]^2*\[Epsilon]*(3 + \[Eta]) - \[Epsilon]*(2 + 5*\ [Eta])) + \[Gamma]^3*(-6 + 24*\[Beta]*Sqrt[\[Epsilon]]*(1 + 2*\ [Epsilon]) + \[Epsilon]^2*(-6 + \[Eta]) + 27* \[Eta] - 24*\[Beta]^2*\[Epsilon]*(1 + \[Eta]) + 2*\ [Epsilon]*(-11 + 9*\[Eta]))) - 2*E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(6 + (42 - 72*\ [Beta]^2)*\[Epsilon] - 3*\[Eta] - 3*\[Gamma]*(6 - 11*\[Eta] + \[Epsilon]*(38 - 5* \[Eta] + 8*\[Beta]^2* (-9 + 2*\[Eta]))) + \[Gamma]^3*(-6 + \ [Epsilon]^2*(-6 + \[Eta]) + 27*\[Eta] - 6* \[Epsilon]*(5 - 3*\[Eta] + 4*\[Beta]^2*(-3 + 2*\ [Eta]))) + 3*\[Gamma]^2*(6 + 2*\[Epsilon]^2 - 19*\[Eta] + \ [Epsilon]*(34 - 11*\[Eta] + 8*\[Beta]^2* (-9 + 4*\[Eta]))))))*\[Lambda] - 2*Sqrt[\[Epsilon]]* (96*Da^3*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^4*\ [Epsilon] - (-1 + \[Gamma])^5*(-1 - 2*E^((\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da])*(-1 + \[Gamma]) + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \ [Gamma]*(-1 + 2*\[Beta]*Sqrt[\[Epsilon]])) - \[Gamma]*(1 + 2*\[Beta]*Sqrt[\[Epsilon]]))*(-1 + E^((2*\ [Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])* (-1 + \[Beta]*Sqrt[\[Epsilon]]) - \[Beta]*Sqrt[\ [Epsilon]])*\[Epsilon] - 96*Da^(5/2)*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]))^3*Sqrt[\[Epsilon]]* (-1 - 2*\[Beta]*Sqrt[\[Epsilon]] + \[Gamma]*(1 + 2*\ [Beta]*Sqrt[\[Epsilon]] + \[Epsilon]) + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + 2*\ [Beta]*Sqrt[\[Epsilon]] + \[Gamma]*(1 - 2*\[Beta]*Sqrt[\[Epsilon]] + \[Epsilon]))) + 4*Da*(-1 + \[Gamma])^2*\[Epsilon]* (9*\[Gamma] - 3*\[Gamma]^2 + 2*E^((\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])*(-1 + \[Gamma])* (5 + 2*\[Gamma]*(2 + 7*\[Beta]*Sqrt[\[Epsilon]]) - 5*\ [Beta]*Sqrt[\[Epsilon]]) - 2*E^((3*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \ [Gamma])*(-5 - 4*\[Gamma] - 5*\[Beta]*Sqrt[\[Epsilon]] + 14*\[Beta]*\[Gamma]*Sqrt[\ [Epsilon]]) - 5*\[Beta]*Sqrt[\[Epsilon]] + 19*\[Beta]*\[Gamma]*Sqrt[\[Epsilon]] - 2*\[Beta]*\ [Gamma]^2*Sqrt[\[Epsilon]] + 2*\[Gamma]*\[Epsilon] - 2*\[Gamma]^2*\[Epsilon] + 6*\[Beta]^2*\[Gamma]^2*\[Epsilon] + E^((4*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])* (5*\[Beta]*Sqrt[\[Epsilon]] + \[Gamma]*(9 - 19*\ [Beta]*Sqrt[\[Epsilon]] + 2*\[Epsilon]) + \[Gamma]^2*(-3 + 2*\[Beta]*Sqrt[\[Epsilon]] - 2*\ [Epsilon] + 6*\[Beta]^2*\[Epsilon])) - 2*E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-10 + \ [Gamma]*(11 + 2*\[Epsilon]) + \[Gamma]^2*(-7 + (-2 + 6*\[Beta]^2)*\[Epsilon]))) + 24*Da^2*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^2*(1 - 2*\[Gamma] + \[Gamma]^2 + 4*\[Beta]*Sqrt[\[Epsilon]] - 8*\[Beta]*\[Gamma]*Sqrt[\ [Epsilon]] + 4*\[Beta]*\[Gamma]^2*Sqrt[\[Epsilon]] - 3*\[Epsilon] + 4*\[Beta]^2*\[Epsilon] - 8*\[Beta]^2*\ [Gamma]*\[Epsilon] + 3*\[Gamma]^2*\[Epsilon] + 4*\[Beta]^2*\[Gamma]^2*\[Epsilon] - 8*\[Beta]*\[Gamma]*\ [Epsilon]^(3/2) + 8*\[Beta]*\[Gamma]^2*\[Epsilon]^(3/2) + \[Gamma]^2*\[Epsilon]^2 + 2*E^((\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da])* (1 + (3 - 4*\[Beta]^2)*\[Epsilon] + \[Gamma]*(-2 + 8*(-1 + \[Beta]^2)*\[Epsilon]) + \[Gamma]^2*(1 + (5 - 4*\[Beta]^2)*\[Epsilon] + \ [Epsilon]^2)) + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(1 - 4*\ [Beta]*Sqrt[\[Epsilon]] - 3*\[Epsilon] + 4*\[Beta]^2*\[Epsilon] + \[Gamma]*(-2 - 8*\[Beta]^2*\ [Epsilon] + 8*\[Beta]*Sqrt[\[Epsilon]]* (1 + \[Epsilon])) + \[Gamma]^2*(1 + 3*\[Epsilon] + 4*\ [Beta]^2*\[Epsilon] + \[Epsilon]^2 - 4*\[Beta]* Sqrt[\[Epsilon]]*(1 + 2*\[Epsilon])))) + 4*Da^(3/2)* (-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \ [Gamma])*Sqrt[\[Epsilon]]* (9 - 6*\[Gamma] - 3*\[Gamma]^2 + 18*\[Beta]*Sqrt[\[Epsilon]] - 18*\[Beta]*\[Gamma]^2*Sqrt[\[Epsilon]] + 4*\[Epsilon] - 17*\[Gamma]*\[Epsilon] + 24*\[Beta]^2*\ [Gamma]*\[Epsilon] + \[Gamma]^2*\[Epsilon] - 24*\[Beta]^2*\[Gamma]^2*\[Epsilon] - 12*\[Beta]*\[Gamma]^2*\ [Epsilon]^(3/2) + E^((3*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(9 - 18*\ [Beta]*Sqrt[\[Epsilon]] + 4*\[Epsilon] + \[Gamma]*(-6 + (-17 + 24*\[Beta]^2)*\[Epsilon]) + \ [Gamma]^2*(-3 + \[Epsilon] - 24*\[Beta]^2* \[Epsilon] + 6*\[Beta]*Sqrt[\[Epsilon]]*(3 + 2*\ [Epsilon]))) - E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(9 + 54*\ [Beta]*Sqrt[\[Epsilon]] + 4*\[Epsilon] + \[Gamma]*(-30 - 96*\[Beta]*Sqrt[\[Epsilon]] - 17*\ [Epsilon] + 24*\[Beta]^2*\[Epsilon]) + \[Gamma]^2*(21 + 25*\[Epsilon] - 24*\[Beta]^2*\[Epsilon] + 6*\[Beta]*Sqrt[\[Epsilon]]* (7 + 2*\[Epsilon]))) + E^((2*\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])* (-9 + 54*\[Beta]*Sqrt[\[Epsilon]] - 4*\[Epsilon] + \ [Gamma]*(30 - 96*\[Beta]*Sqrt[\[Epsilon]] + 17* \[Epsilon] - 24*\[Beta]^2*\[Epsilon]) + \ [Gamma]^2*(-21 - 25*\[Epsilon] + 24*\[Beta]^2*\[Epsilon] + 6* \[Beta]*Sqrt[\[Epsilon]]*(7 + 2*\[Epsilon])))) - 2*Sqrt[Da]* (-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \ [Gamma])^4*Sqrt[\[Epsilon]]* (1 - \[Gamma] + 3*\[Beta]*Sqrt[\[Epsilon]] - 3*\[Beta]*\ [Gamma]*Sqrt[\[Epsilon]] - 2*\[Epsilon] + 2*\[Beta]^2*\[Epsilon] - 3*\[Gamma]*\[Epsilon] - 2*\ [Beta]^2*\[Gamma]*\[Epsilon] - 5*\[Beta]*\[Gamma]*\[Epsilon]^(3/2) - E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \ [Beta]*Sqrt[\[Epsilon]] - 2*\[Epsilon] + 2*\[Beta]^2*\[Epsilon] + \[Gamma]*(1 + 7*\[Epsilon] - 2*\ [Beta]^2*\[Epsilon] + \[Beta]*Sqrt[\[Epsilon]]* (-1 + 5*\[Epsilon]))) + E^((2*\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])* (1 + \[Beta]*Sqrt[\[Epsilon]] + 2*\[Epsilon] - 2*\[Beta]^2* \[Epsilon] + \[Gamma]*(-1 - 7*\[Epsilon] + 2*\[Beta]^2*\[Epsilon] + \ [Beta]*Sqrt[\[Epsilon]]*(-1 + 5*\[Epsilon]))) + E^((3*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(1 - 3*\ [Beta]*Sqrt[\[Epsilon]] - 2*\[Epsilon] + 2*\[Beta]^2*\[Epsilon] + \[Gamma]*(-1 - 3*\[Epsilon] - 2*\ [Beta]^2*\[Epsilon] + \[Beta]*Sqrt[\[Epsilon]]* (3 + 5*\[Epsilon])))))*Subscript[\[Sigma], 1]) + (-1 + \[Gamma])^2*\[Epsilon]* ((1 - \[Gamma])*(6720*Da^3*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]))^4*Sqrt[\[Epsilon]] - 17*(-1 + \[Gamma])^6*(1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da])* (1 - \[Beta]*Sqrt[\[Epsilon]]) + \[Beta]*Sqrt[\ [Epsilon]])^2*Sqrt[\[Epsilon]] - 153*Sqrt[Da]*(-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]))*(-1 + \[Gamma])^5* (-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \ [Beta]*Sqrt[\[Epsilon]]) - \[Beta]*Sqrt[\[Epsilon]])*\[Epsilon] - 840*Da^(5/2)* (-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^3*(-4 - 8*\ [Beta]*Sqrt[\[Epsilon]] - 5*\[Epsilon] + \[Gamma]*(4 + 8*\[Beta]*Sqrt[\[Epsilon]] + 9* \[Epsilon]) + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-4 + 8*\ [Beta]*Sqrt[\[Epsilon]] - 5*\[Epsilon] + \[Gamma]*(4 - 8*\[Beta]*Sqrt[\[Epsilon]] + 9*\ [Epsilon]))) + 84*Da^2*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^2*(-1 + \[Gamma])*Sqrt[\[Epsilon]]* (-3 - 60*\[Beta]*Sqrt[\[Epsilon]] + \[Gamma]*(43 + 100*\ [Beta]*Sqrt[\[Epsilon]] + 25*\[Epsilon]) + 2*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-57 + \ [Gamma]*(57 + 25*\[Epsilon])) + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-3 + 60*\ [Beta]*Sqrt[\[Epsilon]] + \[Gamma]*(43 - 100*\[Beta]*Sqrt[\[Epsilon]] + 25*\ [Epsilon]))) + 4*Da*(-1 + \[Gamma])^3* Sqrt[\[Epsilon]]*(112 - 7*\[Gamma] - 224*E^((3*\ [Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])* (-1 + \[Gamma])*(-1 + \[Beta]*Sqrt[\[Epsilon]]) + 224*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \ [Gamma])*(1 + \[Beta]*Sqrt[\[Epsilon]]) + 112*\[Beta]*Sqrt[\[Epsilon]] + 98*\[Beta]*\[Gamma]*Sqrt[\ [Epsilon]] + 97*\[Epsilon] - 97*\[Gamma]*\[Epsilon] + 105*\[Beta]^2*\[Gamma]*\[Epsilon] + E^((4*\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])* (112 - 112*\[Beta]*Sqrt[\[Epsilon]] + 97*\[Epsilon] + \ [Gamma]*(-7 - 98*\[Beta]*Sqrt[\[Epsilon]] - 97*\[Epsilon] + 105*\[Beta]^2*\[Epsilon])) - 2*E^((2*\ [Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])* (-112 + 97*\[Epsilon] + \[Gamma]*(7 + (-97 + 105*\ [Beta]^2)*\[Epsilon]))) + 28*Da^(3/2)*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]))*(-1 + \[Gamma])^2* (15 - 15*\[Gamma] + 45*\[Beta]*Sqrt[\[Epsilon]] - 45*\[Beta]* \[Gamma]*Sqrt[\[Epsilon]] - 82*\[Epsilon] + 30*\[Beta]^2*\[Epsilon] - 8*\[Gamma]*\[Epsilon] - 30*\ [Beta]^2*\[Gamma]*\[Epsilon] - 90*\[Beta]*\[Gamma]*\[Epsilon]^(3/2) + E^((\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])* (15 - 15*\[Beta]*Sqrt[\[Epsilon]] + 82*\[Epsilon] - 30*\ [Beta]^2*\[Epsilon] + \[Gamma]*(-15 + 15*\[Beta]*(1 - 6*\[Epsilon])*Sqrt[\ [Epsilon]] - 172*\[Epsilon] + 30*\[Beta]^2* \[Epsilon])) + E^((3*\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da])* (15 - 45*\[Beta]*Sqrt[\[Epsilon]] - 82*\[Epsilon] + 30*\ [Beta]^2*\[Epsilon] + \[Gamma]*(-15 - 8*\[Epsilon] - 30*\[Beta]^2*\[Epsilon] + 45*\[Beta]*Sqrt[\[Epsilon]]* (1 + 2*\[Epsilon]))) + E^((2*\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])* (15 + 15*\[Beta]*Sqrt[\[Epsilon]] + 82*\[Epsilon] - 30*\ [Beta]^2*\[Epsilon] + \[Gamma]*(-15 - 172*\[Epsilon] + 30*\[Beta]^2*\[Epsilon] + 15*\[Beta]*Sqrt[\[Epsilon]]* (-1 + 6*\[Epsilon])))))*\[Lambda] - 140*(144*Da^3*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]))^4*Sqrt[\[Epsilon]] - (-1 + \[Gamma])^6*(1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da])* (1 - \[Beta]*Sqrt[\[Epsilon]]) + \[Beta]*Sqrt[\ [Epsilon]])^2*Sqrt[\[Epsilon]] - 8*Sqrt[Da]*(-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]))*(-1 + \[Gamma])^5* (-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \ [Beta]*Sqrt[\[Epsilon]]) - \[Beta]*Sqrt[\[Epsilon]])*\[Epsilon] + 24*Da^2*(-1 + E^((\ [Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))^2* (-1 + \[Gamma])*Sqrt[\[Epsilon]]*(-5*\[Beta]*Sqrt[\ [Epsilon]] + \[Gamma]*(3 + 8*\[Beta]*Sqrt[\[Epsilon]] + 2*\[Epsilon]) + 2*E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])* (-5 + \[Gamma]*(5 + 2*\[Epsilon])) + E^((2*\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])* (5*\[Beta]*Sqrt[\[Epsilon]] + \[Gamma]*(3 - 8*\ [Beta]*Sqrt[\[Epsilon]] + 2*\[Epsilon]))) - 24*Da^(5/2)*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da]))^3* (-3 - 6*\[Beta]*Sqrt[\[Epsilon]] - 4*\[Epsilon] + \ [Gamma]*(3 + 6*\[Beta]*Sqrt[\[Epsilon]] + 7*\[Epsilon]) + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-3 + 6*\ [Beta]*Sqrt[\[Epsilon]] - 4*\[Epsilon] + \[Gamma]*(3 - 6*\[Beta]*Sqrt[\[Epsilon]] + 7*\ [Epsilon]))) + 2*Da*(-1 + \[Gamma])^3* Sqrt[\[Epsilon]]*(9 - 3*\[Gamma] - 18*E^((3*\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])*(-1 + \[Gamma])* (-1 + \[Beta]*Sqrt[\[Epsilon]]) + 18*E^((\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])*(-1 + \[Gamma])* (1 + \[Beta]*Sqrt[\[Epsilon]]) + 9*\[Beta]*Sqrt[\ [Epsilon]] + 3*\[Beta]*\[Gamma]*Sqrt[\[Epsilon]] + 8*\[Epsilon] - 8*\[Gamma]*\[Epsilon] + 6*\[Beta]^2*\[Gamma]* \[Epsilon] + E^((4*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(9 - 9*\ [Beta]*Sqrt[\[Epsilon]] + 8*\[Epsilon] + \[Gamma]*(-3 - 3*\[Beta]*Sqrt[\[Epsilon]] - 8*\[Epsilon] + 6*\[Beta]^2*\[Epsilon])) - 2*E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-9 + 8*\ [Epsilon] + \[Gamma]*(3 + (-8 + 6*\[Beta]^2)*\[Epsilon]))) + 12*Da^(3/2)* (-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \ [Gamma])^2* (1 - \[Gamma] + 3*\[Beta]*Sqrt[\[Epsilon]] - 3*\[Beta]*\ [Gamma]*Sqrt[\[Epsilon]] - 6*\[Epsilon] + 2*\[Beta]^2*\[Epsilon] + \[Gamma]*\[Epsilon] - 2*\[Beta]^2*\ [Gamma]*\[Epsilon] - 5*\[Beta]*\[Gamma]*\[Epsilon]^(3/2) - E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \ [Beta]*Sqrt[\[Epsilon]] - 6*\[Epsilon] + 2*\[Beta]^2*\[Epsilon] + \[Gamma]*(1 + 11*\[Epsilon] - 2*\ [Beta]^2*\[Epsilon] + \[Beta]*Sqrt[\[Epsilon]]* (-1 + 5*\[Epsilon]))) + E^((2*\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da])* (1 + \[Beta]*Sqrt[\[Epsilon]] + 6*\[Epsilon] - 2*\[Beta]^2* \[Epsilon] + \[Gamma]*(-1 - 11*\[Epsilon] + 2*\[Beta]^2*\[Epsilon] + \ [Beta]*Sqrt[\[Epsilon]]*(-1 + 5*\[Epsilon]))) + E^((3*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(1 - 3*\ [Beta]*Sqrt[\[Epsilon]] - 6*\[Epsilon] + 2*\[Beta]^2*\[Epsilon] + \[Gamma]*(-1 + \[Epsilon] - 2*\ [Beta]^2*\[Epsilon] + \[Beta]*Sqrt[\[Epsilon]]* (3 + 5*\[Epsilon])))))*Subscript[\[Sigma], 1]))/ (140*Sqrt[\[Epsilon]]*(24*Da^2*(-1 + E^((\[Gamma]*Sqrt[\ [Epsilon]])/Sqrt[Da]))^2*Sqrt[\[Epsilon]] + (-1 + \[Gamma])^4*(-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da])* (-1 + \[Beta]*Sqrt[\[Epsilon]]) - \[Beta]*Sqrt[\ [Epsilon]])*Sqrt[\[Epsilon]] - 12*Da*(-1 + \[Gamma])*(-1 - 2*E^((\[Gamma]*Sqrt[\[Epsilon]])/ Sqrt[Da])*(-1 + \[Gamma]) + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + \[Beta]*\ [Gamma]*Sqrt[\[Epsilon]]) - \[Beta]*\[Gamma]*Sqrt[\[Epsilon]])*Sqrt[\[Epsilon]] + 4*Sqrt[Da]* (-1 + E^((2*\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))*(-1 + \ [Gamma])^3*\[Epsilon] - 12*Da^(3/2)*(-1 + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da]))* (-1 - 2*\[Beta]*Sqrt[\[Epsilon]] + \[Gamma]*(1 + 2*\ [Beta]*Sqrt[\[Epsilon]] + \[Epsilon]) + E^((\[Gamma]*Sqrt[\[Epsilon]])/Sqrt[Da])*(-1 + 2*\ [Beta]*Sqrt[\[Epsilon]] + \[Gamma]*(1 - 2*\[Beta]*Sqrt[\[Epsilon]] + \ [Epsilon]))))^2))