Re: two integrals
- To: mathgroup at smc.vnet.net
- Subject: [mg79157] Re: two integrals
- From: dimitris <dimmechan at yahoo.com>
- Date: Fri, 20 Jul 2007 03:18:24 -0400 (EDT)
- References: <f7kdjq$4bd$1@smc.vnet.net>
On 18 , 09:56, dimitris <dimmec... at yahoo.com> wrote: > Any ideas for closed form expressions for the > following integrals? > > In[71]:= > Integrate[ArcTan[(1 - z^2)/z^3]*(1/(z + p)), {z, 0, 1}] > > In[73]:= > Integrate[ArcTan[(1 - z^2)/z^3]*(1/(z - p)), {z, 0, 1}, PrincipalValue > -> True] > > [Parameter p takes values in the range (0,1) so > the second integral should be interpreted as a Cauchy > principal value integral] > > Thanks, in advance, for your time and effort. > > D.A. (2nd message) Here is also a workaround for the second integral In[36]:= res2 = Integrate[int2, {z, 0, p - e}, Assumptions -> 0 < e < p < 1, GenerateConditions -> False] + Integrate[int2, {z, p + e, 1}, Assumptions -> 0 < e < p < 1, GenerateConditions -> False] In[37]:= res3 = Limit[res2, e -> 0] (*Check*) In[31]:= N[res3 /. p -> 3/4] Out[31]= -3.3500070719730175 + 0.*I In[34]:= NIntegrate[ArcTan[(1 - z^2)/z^3]*(1/(z - p)) /. p -> 3/4, {z, 0, 3/4 - 10^(-7)}] + NIntegrate[ArcTan[(1 - z^2)/z^3]*(1/(z - p)) /. p -> 3/4, {z, 3/4 + 10^(-7), 1}] Out[34]= -3.350006329606476