simplification
- To: mathgroup at smc.vnet.net
- Subject: [mg77365] simplification
- From: dimitris <dimmechan at yahoo.com>
- Date: Thu, 7 Jun 2007 03:55:39 -0400 (EDT)
Hello. ff = Pi*Cos[1/7*Pi]*Cos[2/7*Pi]* Cos[3/7*Pi]/Sin[Pi*Cos[1/7*Pi]*Cos[2/7*Pi]*Cos[3/7*Pi]]; Let's make an attempt to simplify ff. In[190]:= FullSimplify[ff] Out[190]= Pi*Cos[Pi/7]*Cos[(2*Pi)/7]*Cos[(3*Pi)/7]*Csc[Pi*Cos[Pi/7]*Cos[(2*Pi)/ 7]*Cos[(3*Pi)/7]] Let's try harder In[194]:= o1=FullSimplify[Together[TrigToExp[ff]]] Out[194]= (1/4)*Sqrt[1 + 1/Sqrt[2]]*Pi or as an another way take In[199]:= o2=FullSimplify[TrigFactor //@ ff] Out[199]= (1/8)*Pi*Csc[Pi/8] My first question is how someone can arrive from o1 to o2 and vice versa. Secondly, o1 was obtained by FullSimplify[Together[TrigToExp[ff]]]. Why doesn't In[206]:= FullSimplify[ff, TransformationFunctions -> {Automatic, TrigToExp, Together}] Out[206]= Pi*Cos[Pi/7]*Cos[(2*Pi)/7]*Cos[(3*Pi)/7]*Csc[Pi*Cos[Pi/7]*Cos[(2*Pi)/ 7]*Cos[(3*Pi)/7]] do the same thing? What I miss here? Thirdly, why the following does suceed? In[3]:= FullSimplify[ff, TransformationFunctions -> {Automatic, FullSimplify}] Out[3]= (1/8)*Pi*Csc[Pi/8] Thank you very much! Dimitris