Can anybody help me solving such a system of nonlinear equations?
- To: mathgroup at smc.vnet.net
- Subject: [mg77432] Can anybody help me solving such a system of nonlinear equations?
- From: loveinla at gmail.com
- Date: Fri, 8 Jun 2007 05:38:26 -0400 (EDT)
Hi, guys, I have tried NSolve, Solve, Reduce, to solve the system below, however, the mathematica didn't return an answer. Can anybody know how to solve it using Mathematica? The inputs are as follows: a = 24; b = 5; c = 25; d = 4; cA = 3; cB = 2; t = 5; alpha = 0.2; Solve[{(a - b*pA - b*(pA - cA))*(0.5 - ((d/2)( p1^2 - p2^2) - c(p1 - p2))/(2t) - ((b/2)((pA - disA)^2 - pA^2) + a*disA)/(2t)) - ((p1 - cB)( c - d*p1) + ( pA - disA - cA)(a - b*(pA - disA)) - (pA - cA)(a - b*(pA)))*(-(a - b*pA)/(2t)) == 0, -(a - b*(pA - disA) - b(pA - disA - cA))*(0.5 + ((d/2) ( p1^2 - p2^2) - c(p1 - p2))/(2t) + (( b/2)((pA - disA)^2 - pA^2) + a*disA)/(2t)) - (( p1 - cB)(c - d*p1) + (pA - disA - cA)(a - b*(pA - disA)) - (pA - cA)(a - b*( pA)))*(-(a - b*(pA - disA))/(2t)) == 0, ((p1 - cB)(c - d*p1) + alpha*(pA - disA - cA)(a - b*( pA - disA)) - alpha*(pA - cA)(a - b*(pA)))*(-( c - d*p1)/(2t)) + (c - d*p1 - d(p1 - cB))(0.5 + ((d/ 2)(p1^2 - p2^2) - c(p1 - p2))/(2t) + alpha*(( b/2)((pA - disA)^2 - pA^2) + a*disA)/( 2t)) == 0, (c - d*p2 - d*(p2 - cB))(0.5 - ((d/ 2)(p1^2 - p2^2) - c(p1 - p2))/(2t) - alpha*((b/ 2)((pA - disA)^2 - pA^2) + a*disA)/(2t)) + ( p2 - cB)(c - d*p2)(-(c - d*p2)/(2t)) == 0}, {pA, p1, p2, disA}] Thank you in advance.