MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Can anybody help me solving such a system of nonlinear equations?

  • To: mathgroup at smc.vnet.net
  • Subject: [mg77432] Can anybody help me solving such a system of nonlinear equations?
  • From: loveinla at gmail.com
  • Date: Fri, 8 Jun 2007 05:38:26 -0400 (EDT)

Hi, guys,

I have tried NSolve, Solve, Reduce, to solve the system below,
however, the mathematica didn't return an answer. Can anybody know how
to solve it using Mathematica?

The inputs are as follows:

a = 24;
b = 5;
c = 25;
d = 4;
cA = 3;
cB = 2;
t = 5;
alpha = 0.2;
Solve[{(a - b*pA - b*(pA - cA))*(0.5 - ((d/2)(
p1^2 - p2^2) -
    c(p1 - p2))/(2t) - ((b/2)((pA - disA)^2 - pA^2) +
              a*disA)/(2t)) - ((p1 - cB)(
          c - d*p1) + (
              pA - disA - cA)(a - b*(pA - disA)) - (pA -
                    cA)(a - b*(pA)))*(-(a - b*pA)/(2t)) ==
              0, -(a - b*(pA - disA) - b(pA - disA - cA))*(0.5 + ((d/2)
(
                    p1^2 - p2^2) - c(p1 - p2))/(2t) + ((
        b/2)((pA - disA)^2 - pA^2) + a*disA)/(2t)) - ((
              p1 - cB)(c - d*p1) + (pA - disA - cA)(a -
                    b*(pA - disA)) - (pA - cA)(a - b*(
              pA)))*(-(a - b*(pA - disA))/(2t)) == 0, ((p1 -
           cB)(c - d*p1) + alpha*(pA - disA - cA)(a - b*(
    pA - disA)) - alpha*(pA - cA)(a - b*(pA)))*(-(
                c - d*p1)/(2t)) + (c - d*p1 - d(p1 - cB))(0.5 + ((d/
              2)(p1^2 - p2^2) - c(p1 - p2))/(2t) + alpha*((
                    b/2)((pA - disA)^2 - pA^2) + a*disA)/(
              2t)) == 0, (c - d*p2 - d*(p2 - cB))(0.5 - ((d/
                          2)(p1^2 - p2^2) - c(p1 - p2))/(2t) -
alpha*((b/
        2)((pA - disA)^2 - pA^2) + a*disA)/(2t)) + (
              p2 - cB)(c - d*p2)(-(c - d*p2)/(2t)) == 0}, {pA, p1, p2,
disA}]



Thank you in advance.



  • Prev by Date: Re: Re: Java failure
  • Next by Date: Re: Time, Inverse, Simulation simple dynamical system, speed issue
  • Previous by thread: Re: 3D interpolation
  • Next by thread: Re: Can anybody help me solving such a system of nonlinear equations?