Integral that Mathematica 5.1 can do and Mathematica 6 cannot do
- To: mathgroup at smc.vnet.net
- Subject: [mg77562] Integral that Mathematica 5.1 can do and Mathematica 6 cannot do
- From: Andrew Moylan <andrew.j.moylan at gmail.com>
- Date: Wed, 13 Jun 2007 07:24:04 -0400 (EDT)
Consider the following integral: Assuming[0 < r < Infinity && 0 < \[Rho] < Infinity && 0 < s < Infinity, Integrate[(\[Rho]* r)/(Sqrt[s^2 + z^2]*(1 + Sqrt[s^2 + z^2]/r)^2), {z, - Infinity, Infinity}]] Mathematica 5.1 gives the solution as: -((1/(45*s^2))*(2*r*\[Rho]* (-15*s^2 + 6*r^2* Hypergeometric2F1[1, 2, 7/2, 1 - r^2/s^2] - 6*s^2*Hypergeometric2F1[ 1, 2, 7/2, 1 - r^2/s^2] - 3*(r^2 - s^2)* HypergeometricPFQ[ {1, 1, 3/2}, {5/2, 7/2}, 1 - r^2/s^2] - 8*(r^2 - s^2)* HypergeometricPFQ[ {1, 3/2, 2}, {5/2, 7/2}, 1 - r^2/s^2] - 4*r^2*HypergeometricPFQ[ {3/2, 2, 2}, {5/2, 7/2}, 1 - r^2/s^2] + 4*s^2*HypergeometricPFQ[ {3/2, 2, 2}, {5/2, 7/2}, 1 - r^2/s^2]))) Mathematica 6 instead gives the following conditional solution: r^3*\[Rho]*If[r < s, ((-Pi)*r + 2*Sqrt[-r^2 + s^2] + 2*r*ArcTan[r/Sqrt[-r^2 + s^2]])/(-r^2 + s^2)^(3/2), Integrate[1/(Sqrt[s^2 + z^2]*(r + Sqrt[s^2 + z^2])^2), {z, -Infinity, Infinity}, Assumptions -> Element[z, Reals] && s > 0 && r >= s && \[Rho] > 0]]