Re: Integral that Mathematica 5.1 can do and Mathematica 6 cannot do
- To: mathgroup at smc.vnet.net
- Subject: [mg77635] Re: Integral that Mathematica 5.1 can do and Mathematica 6 cannot do
- From: dimitris <dimmechan at yahoo.com>
- Date: Thu, 14 Jun 2007 05:24:50 -0400 (EDT)
- References: <f4okju$6mr$1@smc.vnet.net>
I must be happy with my Mathematica 5.2! In[2]:= Assuming[0 < r < Infinity && 0 < < Infinity && 0 < s < Infinity, Integrate[( *r)/(Sqrt[s^2 + z^2]*(1 + Sqrt[s^2 + z^2]/r)^2), {z, - Infinity, Infinity}]] Out[2]= -((2*r^3* *(r^2 - s^2 + r*Sqrt[-r^2 + s^2]*ArcCos[r/s]))/(r^2 - s^2)^2) Dimitris / Andrew Moylan : > Consider the following integral: > > Assuming[0 < r < Infinity && 0 < \[Rho] < Infinity && 0 < s < > Infinity, > Integrate[(\[Rho]* > r)/(Sqrt[s^2 + z^2]*(1 + Sqrt[s^2 + z^2]/r)^2), {z, - > Infinity, > Infinity}]] > > Mathematica 5.1 gives the solution as: > > -((1/(45*s^2))*(2*r*\[Rho]* > (-15*s^2 + 6*r^2* > Hypergeometric2F1[1, 2, > 7/2, 1 - r^2/s^2] - > 6*s^2*Hypergeometric2F1[ > 1, 2, 7/2, > 1 - r^2/s^2] - > 3*(r^2 - s^2)* > HypergeometricPFQ[ > {1, 1, 3/2}, {5/2, > 7/2}, 1 - r^2/s^2] - > 8*(r^2 - s^2)* > HypergeometricPFQ[ > {1, 3/2, 2}, {5/2, > 7/2}, 1 - r^2/s^2] - > 4*r^2*HypergeometricPFQ[ > {3/2, 2, 2}, {5/2, > 7/2}, 1 - r^2/s^2] + > 4*s^2*HypergeometricPFQ[ > {3/2, 2, 2}, {5/2, > 7/2}, 1 - r^2/s^2]))) > > Mathematica 6 instead gives the following conditional solution: > > r^3*\[Rho]*If[r < s, ((-Pi)*r + 2*Sqrt[-r^2 + s^2] + > 2*r*ArcTan[r/Sqrt[-r^2 + s^2]])/(-r^2 + s^2)^(3/2), > Integrate[1/(Sqrt[s^2 + z^2]*(r + Sqrt[s^2 + z^2])^2), > {z, -Infinity, Infinity}, Assumptions -> Element[z, Reals] && > s > 0 && r >= s && \[Rho] > 0]]