Re: Solving a Integral
- To: mathgroup at smc.vnet.net
- Subject: [mg78210] Re: Solving a Integral
- From: m.r at inbox.ru
- Date: Tue, 26 Jun 2007 04:08:45 -0400 (EDT)
- References: <f5dkds$no$1@smc.vnet.net>
On Jun 21, 5:37 am, ehrnsperge... at pg.com wrote: > I need help in solving the following integral: > > Integral = 1/(beta^alpha* Gamma[alpha]) * > Integrate[x^(alpha-1)*Exp[-x/beta]/(1+Exp[-a*x-b]),{x,0, infinity}, > Assumptions: (alpha> 0)||(beta > 0)||(a > 0)||(b <0)] > > The Integral is approximately 1/(beta^alpha* Gamma[alpha]) > *1/(1+Exp[-a*alpha*beta-b]) + Order[alpha*beta^2] > > However, I would like to have an exact analytical solution, and I am > failing to convince Mathematica to give me the solution. Is there a way to > ask Mathematica to give the solution as a series expansion of my > approximate solution? > > Thanks so much for your help, > > Bruno > > Dr. Bruno Ehrnsperger > Principal Scientist > > Procter & Gamble Service GmbH > Sulzbacherstr.40 > 65824 Schwalbach > Germany > > fon +49-6196-89-4412 > fax +49-6196-89-22965 > e-mail: ehrnsperge... at pg.com > internet:www.pg.com > > Gesch=E4ftsf=FChrer: Otmar W. Debald, Gerhard Ritter, Dr. Klaus Schumann, > Willi Schwerdtle > Sitz: Sulzbacher Str. 40, 65824 Schwalbach am Taunus, Amtsgericht: > K=F6nigstein im Taunus HRB 4990 Expand the integrand into a series of exponents: In[1]:= 1/(beta^alpha Gamma[alpha]) x^(alpha - 1) E^(-x/beta)/ (1 + E^(-a x - b)) == 1/(beta^alpha Gamma[alpha]) Sum[ (-1)^k x^(alpha - 1) E^((-a k - 1/beta) x - b k), {k, 0, Infinity}] // Simplify Out[1]= True In[2]:= Assuming[{alpha > 0, beta > 0, a > 0, k >= 0}, Integrate[(-1)^k x^(alpha - 1) E^((-a k - 1/beta) x - b k), {x, 0, Infinity}]] Out[2]= (-1)^k E^(-b k) (beta/(1 + a beta k))^alpha Gamma[alpha] In[3]:= 1/(beta^alpha Gamma[alpha]) Sum[ % /. (x_/y_)^p_ :> (1/Expand[y/x])^p, {k, 0, Infinity}] Out[3]= a^-alpha beta^-alpha LerchPhi[-E^-b, alpha, 1/(a beta)] Maxim Rytin m.r at inbox.ru