Services & Resources / Wolfram Forums
MathGroup Archive
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: two integrals

  • To: mathgroup at
  • Subject: [mg78381] Re: two integrals
  • From: dimitris <dimmechan at>
  • Date: Fri, 29 Jun 2007 05:53:52 -0400 (EDT)
  • References: <f5vraa$jj1$>

            dimitris       :
> Any ideas about getting a closed form expression?
> No need fo convegrence; a result valid in the Hadamard sense is ok!
> Integrate[(Sqrt[1 + m^2*u^2]/u)*Exp[(-y)*(Sqrt[1 + m^2*u^2]/m)]*
>   Sin[u*x], {x, 0, Infinity}]
> Integrate[Exp[(-y)*(Sqrt[1 + m^2*u^2]/m)]*Cos[u*x], {x, 0, Infinity}]
> Dimitris

The second integral I am interested in is

>Integrate[Exp[(-y)*(Sqrt[1 + m^2*u^2]/m)]*Cos[u*x], {x, 0, Infinity}]

However, having in hand the result

> Integrate[u*Sin[u*x]*Exp[(-y)*(Sqrt[1 + m^2*u^2]/m)],{u,0,Infinity}]=BesselK[0, Sqrt[x^2 + y^2]/m]

(which I prove in a post called "a definite integral and a

and considering that

-D[Exp[(-y)*(Sqrt[1 + m^2*u^2]/m)]*Cos[u*x], x]

(u*Sin[u*x])/E^((Sqrt[1 + m^2*u^2]*y)/m)

we finally have

(*Integrate[Exp[(-y)*(Sqrt[1 + m^2*u^2]/m)]*Cos[u*x], {x, 0,
Infinity}] =)
-Integrate[(x*y*BesselK[2, Sqrt[x^2 + y^2]/m])/(m^2*(x^2 + y^2)), x]

(y*BesselK[1, Sqrt[x^2 + y^2]/m])/(m*Sqrt[x^2 + y^2])


But the quest for the first integral keeps on!


  • Prev by Date: Re: Problems with DrawGraphics and Mathematica 6.0?
  • Next by Date: Re: comparing rewite rules
  • Previous by thread: two integrals
  • Next by thread: Extracting subexpressions