Re: two integrals
- To: mathgroup at smc.vnet.net
- Subject: [mg78381] Re: two integrals
- From: dimitris <dimmechan at yahoo.com>
- Date: Fri, 29 Jun 2007 05:53:52 -0400 (EDT)
- References: <f5vraa$jj1$1@smc.vnet.net>
dimitris : > Any ideas about getting a closed form expression? > No need fo convegrence; a result valid in the Hadamard sense is ok! > > Integrate[(Sqrt[1 + m^2*u^2]/u)*Exp[(-y)*(Sqrt[1 + m^2*u^2]/m)]* > Sin[u*x], {x, 0, Infinity}] > > Integrate[Exp[(-y)*(Sqrt[1 + m^2*u^2]/m)]*Cos[u*x], {x, 0, Infinity}] > > Dimitris The second integral I am interested in is >Integrate[Exp[(-y)*(Sqrt[1 + m^2*u^2]/m)]*Cos[u*x], {x, 0, Infinity}] However, having in hand the result > Integrate[u*Sin[u*x]*Exp[(-y)*(Sqrt[1 + m^2*u^2]/m)],{u,0,Infinity}]=BesselK[0, Sqrt[x^2 + y^2]/m] (which I prove in a post called "a definite integral and a workaround") and considering that In[86]:= -D[Exp[(-y)*(Sqrt[1 + m^2*u^2]/m)]*Cos[u*x], x] Out[86]= (u*Sin[u*x])/E^((Sqrt[1 + m^2*u^2]*y)/m) we finally have (*Integrate[Exp[(-y)*(Sqrt[1 + m^2*u^2]/m)]*Cos[u*x], {x, 0, Infinity}] =) In[83]:= -Integrate[(x*y*BesselK[2, Sqrt[x^2 + y^2]/m])/(m^2*(x^2 + y^2)), x] Out[83]= (y*BesselK[1, Sqrt[x^2 + y^2]/m])/(m*Sqrt[x^2 + y^2]) Voila! But the quest for the first integral keeps on! Dimitris