MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Using FindRoot

eqn = .15*Pi*(R^2) == (2*R^2*ArcCos[45.9/(2*R)]) - (.5*45.9*
      Sqrt[4*R^2 - 45.9^2]);

Solve[4*R^2 - 45.9^2 == 0, R]

{{R -> -22.95}, {R -> 22.95}}

The root is complex for |R| < 22.95

Plot[Evaluate[eqn[[1]] - eqn[[2]]], {R, 20, 35}]

Use a closer starting value where R is real

FindRoot[eqn, {R, 25}]

{R -> 30.87736860938117}

Bob Hanlon

---- tdude <stiletto at> wrote: 
> I am trying to find the root of the following equation
> FindRoot[.15*[Pi]*(R^2)==(2*R^2*ArcCos[45.9/(2*R)])-(.5*45.9*Sqrt[4*R^2-45.9^2]),{R,.1}, MaxIterations->100000]
> When I try this with two other systems, both give me an answer of 30.8773686.
> However, with Mathematica, the answer I get appears to be a complex root, along with this message:
> FindRoot::lstol: The line search decreased the step size to within tolerance specified by AccuracyGoal and PrecisionGoal but was unable to find a sufficient decrease in the merit function.  You may need more than MachinePrecision digits of working precision to meet these tolerances.
> {R -> 20.1137- 4.87774*10^-14 \[ImaginaryI]}
> Why would the answer be a complex root when using Mathematica, yet real when using the other two packages?
> Thanks Tony.

  • Prev by Date: Re: Scalars Instead of Lists with One Element
  • Next by Date: Re: Plotting Points with Labels
  • Previous by thread: RE: Using FindRoot
  • Next by thread: Re: Using FindRoot