Mathematica 9 is now available
Services & Resources / Wolfram Forums
-----
 /
MathGroup Archive
2007
*January
*February
*March
*April
*May
*June
*July
*August
*September
*October
*Archive Index
*Ask about this page
*Print this page
*Give us feedback
*Sign up for the Wolfram Insider

MathGroup Archive 2007

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Decompose function into one function for each variable

  • To: mathgroup at smc.vnet.net
  • Subject: [mg80807] Re: Decompose function into one function for each variable
  • From: dimitris <dimmechan at yahoo.com>
  • Date: Sun, 2 Sep 2007 02:57:02 -0400 (EDT)
  • References: <fbaqnl$qba$1@smc.twtelecom.net>

On 1     , 07:44, tomfabtas... at hotmail.com wrote:
> Hello,
>
> I have a function :
>
> k[lgd_, pd_] := A[lgd] * B[pd] * C[pd] - D[lgd] * E[pd] * C[pd]
>
> and I woulud like to decompose the function into :
>
> k[lgd_, pd_] = Y[lgd] + Z[pd]
>
> Any ideas how I can make this decomposition ?
>
> Thanks,
> Tom

Dear Tom,

1) Do not use Capital letters as user defined symbols, variables
and etc. In this way you will avoid possible confliction issues.
The symbols E and D are respectively

In[4]:=
Information /@ {E, D};

>From In[4]:=
"E is the exponential constant e (base of natural logarithms), with
numerical value approximately equal to 2.71828."

>From In[4]:=
Attributes[E] = {Constant, Protected, ReadProtected}

>From In[4]:=
"D[f, x] gives the partial derivative of f with respect to x. D[f, {x,
n}] gives the nth partial derivative of f with respect to \
x. D[f, x1, x2, ... ] gives a mixed derivative."

>From In[4]:=
Attributes[D] = {Protected, ReadProtected}

Options[D] := {NonConstants -> {}}

2) No help can be given if you don't show your function.

Regards
Dimitris



  • Prev by Date: v6.0.1 problems translating previous notebooks...
  • Next by Date: Re: rotating rings illusion
  • Previous by thread: Re: Decompose function into one function for each variable
  • Next by thread: Re: Decompose function into one function for each variable