PRINCIPAL VALUE + 3D NINTEGRATE
- To: mathgroup at smc.vnet.net
- Subject: [mg81514] PRINCIPAL VALUE + 3D NINTEGRATE
- From: djokic at phy.bg.ac.yu
- Date: Wed, 26 Sep 2007 06:44:35 -0400 (EDT)
A big HI to everybody !!! A problem I am faced with is about numerically solving principal value of a 3D integral whose integrand contains an infinity number of singularities on a surface. So, in order not to be explaining that in detail, here my problem is: \!\(\(Q[y_] := \(52. y\)\/ArcTanh[\(2. y\)\/5. ];\)\ [IndentingNewLine] \(g[y_] := FindRoot[Q[x] == y, {x, \ 5. \ , \ 2. }];\)\ [IndentingNewLine] \(R[y_] := Re[\(\(g[y]\)[\([1]\)]\)[\([2]\)]];\)\[IndentingNewLine] \(J[x_, y_, z_] := 4.92 \((Cos[x] + Cos[y] + Cos[z])\) + 3.88 \((Cos[\(x + y\)\/ 2=2E ] + Cos[\(y + z\)\/2. ] + Cos[\(z + x\)\/2. ])\);\)\n \(j[x_, y_, z_] := 3.88 \((Cos[\(x - y\)\/2. ] + Cos[\(y - z\)\/2. ] + Cos[\(z - x\)\/2. ])\);\)\n \(W[x_, y_, z_] := Sqrt[\((39.942 + J[x, y, z] - j[x, y, z])\) \((39.942 - J[x, y, z] - j[ x, y, z])\)];\)\[IndentingNewLine] \(=CE=A9[K_, T_, =CF=89_] := \(\(2. \(K\^2\) R[T]\^3\)\/=CF=80\^3\) NIntegrate[\((\(\((39.942 - j[x, y, \ z])\)*\((39.942 - j[x, y, z])\)\)\/W[x, y, z])\) \(1\/\(=CF=89\^2 - 4. \(R[T]\^2\) W[ x, y, z]\^2 + 0.00000000000000001\)\) Coth[\(R[T] W[x, y, z]\)\/\(1.44 T\)], {x, \(-=CF=80\), =CF=80}, {y, \(-=CF=80\), =CF=80}, {z, \= (-=CF=80\), =CF=80}];\)\ \[IndentingNewLine] s = Table[=CE=A9[K = 2. , T, =CF=89 = 50. ], {T, 1. , 152. , 2. }]\) When obtaining the function =CE=A9[T] and drawing it depending on parameter T, the data result achieved in such a way does not look so smooth, particularly in the case when =CF=89 <200. Well, how to get this function as smoothed as possible? All the best, Dejan Djokic P=2E S. 0.00000000000000001 has ben put in the integration to avoid singularities on the surface.