Re: Strange Output!!!Please help me thank you.
- To: mathgroup at smc.vnet.net
- Subject: [mg98730] Re: Strange Output!!!Please help me thank you.
- From: "Sjoerd C. de Vries" <sjoerd.c.devries at gmail.com>
- Date: Fri, 17 Apr 2009 04:27:59 -0400 (EDT)
- References: <gs6pfe$h1o$1@smc.vnet.net>
Combine both Reduces:
Reduce[{Element[{i, j}, Integers], i <= iP, j >= jP, j + i == jP + =
iP,
Element[{n, iP}, Integers], Not[(iP < n)],
Exists[{iPP}, (iPP < n) && iP == iPP + 1]}, {iP, jP},
Backsubstitution -> True]
Cheers -- Sjoerd
On Apr 16, 10:15 am, olfa <olfa.mra... at yahoo.fr> wrote:
> Hi Mathematica community,
> I have to solve this system:
> Reduce[{Element[{i, j}, Integers], i <= iP, j >= jP,
> 1*j + 1*i == 1*jP + 1*iP,
> Reduce[{Element[{N, iP}, Integers], Not[(iP < N)],
> Exists[{iPP}, (iPP < N) && iP == iPP + 1]}]}, {iP, jP},
> Backsubstitution -> True]
>
> the output should be:( i | j | N | iP) are Integers && i <= N && iP ==
=
> N &&
> jP == i + j - N
> but mathematica gave me this output:
> (C[1] | C[2] | C[3] | C[4]) are Integers && C[1] >= 0 &&
> C[2] >= 0 && C[3] >= 0 && C[4] >= 0 && i == C[1] - C[2] - C[=
3] &&
> iP == C[1] - C[2] + C[4] && N == C[1] - C[2] + C[4] &&
> jP == j - C[3] - C[4]
>
> which is not understandable at all! and I dont want the output to be
> like that.
>
> I have observed that when I remove i from Element[{i, j}, Integers]
> mathematica give me the output I want and which is :iP == N && jP =
==
> i + j - N
>
> So how can I have this same output without removing i from Element[{i,
> j}, Integers]?
>
> Thank you very much in advance.