Re: Strange Output!!!Please help me thank you.
- To: mathgroup at smc.vnet.net
- Subject: [mg98730] Re: Strange Output!!!Please help me thank you.
- From: "Sjoerd C. de Vries" <sjoerd.c.devries at gmail.com>
- Date: Fri, 17 Apr 2009 04:27:59 -0400 (EDT)
- References: <gs6pfe$h1o$1@smc.vnet.net>
Combine both Reduces: Reduce[{Element[{i, j}, Integers], i <= iP, j >= jP, j + i == jP + = iP, Element[{n, iP}, Integers], Not[(iP < n)], Exists[{iPP}, (iPP < n) && iP == iPP + 1]}, {iP, jP}, Backsubstitution -> True] Cheers -- Sjoerd On Apr 16, 10:15 am, olfa <olfa.mra... at yahoo.fr> wrote: > Hi Mathematica community, > I have to solve this system: > Reduce[{Element[{i, j}, Integers], i <= iP, j >= jP, > 1*j + 1*i == 1*jP + 1*iP, > Reduce[{Element[{N, iP}, Integers], Not[(iP < N)], > Exists[{iPP}, (iPP < N) && iP == iPP + 1]}]}, {iP, jP}, > Backsubstitution -> True] > > the output should be:( i | j | N | iP) are Integers && i <= N && iP == = > N && > jP == i + j - N > but mathematica gave me this output: > (C[1] | C[2] | C[3] | C[4]) are Integers && C[1] >= 0 && > C[2] >= 0 && C[3] >= 0 && C[4] >= 0 && i == C[1] - C[2] - C[= 3] && > iP == C[1] - C[2] + C[4] && N == C[1] - C[2] + C[4] && > jP == j - C[3] - C[4] > > which is not understandable at all! and I dont want the output to be > like that. > > I have observed that when I remove i from Element[{i, j}, Integers] > mathematica give me the output I want and which is :iP == N && jP = == > i + j - N > > So how can I have this same output without removing i from Element[{i, > j}, Integers]? > > Thank you very much in advance.