Re: Multiple DE solutions in ParametricPlot

• To: mathgroup at smc.vnet.net
• Subject: [mg102324] Re: Multiple DE solutions in ParametricPlot
• From: Peter Breitfeld <phbrf at t-online.de>
• Date: Wed, 5 Aug 2009 05:45:46 -0400 (EDT)
• References: <h58rc9\$q4c\$1@smc.vnet.net>

```Narasimham wrote:

> How may it be possible to get several ParametricPlots together? TIA
> for pointing errors here.
>
> XY = {x, y} /.
>   First /@ (NDSolve[{y'[t] + x[t] 2 == 0, -x'[t] + y[t]^3 == 2,
>         x[0] == #1, y[0] == #2},
>        {x, y}, {t, 0, 3.4}] & @@@ {{-2.1, 0.8}, {.5, .6}, {1, -.2}})
>
> ParametricPlot[Evaluate[#[t] & /@ XY], {t, 0, 3.4}]
>
> Regards
> Narasimham
>

If you look at the output of  #[t]&/@XY:

{{InterpolatingFunction[{{0.`,3.4`}},"<>"],
InterpolatingFunction[{{0.`,3.4`}},"<>"]}[t],
{InterpolatingFunction[{{0.`,3.4`}},"<>"],
InterpolatingFunction[{{0.`,3.4`}},"<>"]}[t],
{InterpolatingFunction[{{0.`,3.4`}},"<>"],
InterpolatingFunction[{{0.`,3.4`}},"<>"]}[t]}

That is not what you wanted. You wanted [t] just behind every
InterpolatingFunction[...]

But this will work:

ParametricPlot[
Evaluate[Table[#[t] & /@ XY[[i]], {i, 1, Length[XY]}]],
{t, 0, 3.4}]

--
_________________________________________________________________
Peter Breitfeld, Bad Saulgau, Germany -- http://www.pBreitfeld.de

```

• Prev by Date: LinearModelFit regression estimated variance error
• Next by Date: Re: Strong memory consumption by List-plotting functions
• Previous by thread: Re: Multiple DE solutions in ParametricPlot