Re: Re: Test for composite digit
- To: mathgroup at smc.vnet.net
- Subject: [mg94991] Re: [mg94972] Re: [mg94930] Test for composite digit
- From: DrMajorBob <btreat1 at austin.rr.com>
- Date: Thu, 1 Jan 2009 20:30:13 -0500 (EST)
- References: <200812311106.GAA13449@smc.vnet.net>
- Reply-to: drmajorbob at longhorns.com
A less confusing version: Clear[allowed, ok3, better, stick, next3] allowed[n_Integer? Positive] := {{4, 6, 8, 9}, {0, 1, 2, 3, 5, 7}}[[Mod[n, 2, 1]]] minAllowed[n_Integer?Positive] := Min@allowed@n maxAllowed[n_Integer?Positive] := Max@allowed@n ok3[k_, {j_}] := MemberQ[allowed[j], k] better[k_, j_] := better[k, j] = {Min@Complement[allowed[j], Range[0, k]]} stick[d : {one_Integer, ___Integer}] /; ! ok3[one, {1}] := If[one > maxAllowed@1, minAllowed /@ Range[1 + Length@d], Join[better[one, 1], minAllowed /@ Range[2, Length@d]] ] stick[d : {one_Integer, two_Integer, ___Integer}] /; ! ok3[two, {2}] := If[ two > maxAllowed@2, Join[better[one, 1], minAllowed /@ Range[2, Length@d]], Join[{one}, better[two, 2], minAllowed /@ Range[3, Length@d]] ] stick[d : {__Integer}] /; Position[MapIndexed[ok3, d], False, 1, 1] == {} := d stick[d : {__Integer}] := Module[{k, bad = Position[MapIndexed[ok3, d], False, 1, 1][[1, 1]]}, k = d[[bad]]; If[ k > maxAllowed@bad, Join[Take[d, bad - 2], better[k, bad - 1], minAllowed /@ Range[bad, Length@d]], Join[Take[d, bad - 1], better[k, bad], minAllowed /@ Range[bad + 1, Length@d]] ] ] next3[n_Integer] := FromDigits@FixedPoint[stick, IntegerDigits[n + 1]] RandomInteger[{1, 7*10^5}] next2@% // Timing next3@%% // Timing 354808 {1.39235, 404040} {0.000342, 404040} Bobby On Thu, 01 Jan 2009 06:27:57 -0600, DrMajorBob <btreat1 at austin.rr.com> wrote: > Something like this (naive but effective): > > Clear[ok1, composite, next1] > composite[n_] := n > 1 && ! PrimeQ@n > SetAttributes[composite, Listable] > ok1[n_] /; 1000 <= n <= 9999 := > Module[{digits = IntegerDigits[n]}, {True, False, True, False} == > composite@digits] > ok1[n_] /; 100 <= n <= 999 := > Module[{digits = IntegerDigits[n]}, {True, False, True} == > composite@digits] > next1[n_Integer] /; n < 10^4 := > Module[{k = n + 1}, While[k < 10^4 && ! ok1@k, k++]; k] > > test1 = Rest@NestList[next1, 844, 100] > > {854, 856, 858, 859, 874, 876, 878, 879, 904, 906, 908, 909, 914, \ > 916, 918, 919, 924, 926, 928, 929, 934, 936, 938, 939, 954, 956, 958, \ > 959, 974, 976, 978, 979, 4040, 4041, 4042, 4043, 4045, 4047, 4060, \ > 4061, 4062, 4063, 4065, 4067, 4080, 4081, 4082, 4083, 4085, 4087, \ > 4090, 4091, 4092, 4093, 4095, 4097, 4140, 4141, 4142, 4143, 4145, \ > 4147, 4160, 4161, 4162, 4163, 4165, 4167, 4180, 4181, 4182, 4183, \ > 4185, 4187, 4190, 4191, 4192, 4193, 4195, 4197, 4240, 4241, 4242, \ > 4243, 4245, 4247, 4260, 4261, 4262, 4263, 4265, 4267, 4280, 4281, \ > 4282, 4283, 4285, 4287, 4290, 4291} > > If you ALWAYS want to start with a composite digit and alternate, you > could generalize to > > Clear[composite, ok2] > composite[n_] := MemberQ[{4, 6, 8, 9}, n] > SetAttributes[composite, Listable] > ok2[digits_List] := > MatchQ[composite@ > digits, {PatternSequence[True, False] ..} | {PatternSequence[True, > False] .., True} | {True}] > ok2[n_Integer] := ok2@IntegerDigits@n > ok2[other_] = False; > next2[n_Integer] := Module[{k = n + 1}, While[! ok2@k, k++]; k] > > test2 = Rest@NestList[next2, 844, 100] > > {854, 856, 858, 859, 874, 876, 878, 879, 904, 906, 908, 909, 914, \ > 916, 918, 919, 924, 926, 928, 929, 934, 936, 938, 939, 954, 956, 958, \ > 959, 974, 976, 978, 979, 4040, 4041, 4042, 4043, 4045, 4047, 4060, \ > 4061, 4062, 4063, 4065, 4067, 4080, 4081, 4082, 4083, 4085, 4087, \ > 4090, 4091, 4092, 4093, 4095, 4097, 4140, 4141, 4142, 4143, 4145, \ > 4147, 4160, 4161, 4162, 4163, 4165, 4167, 4180, 4181, 4182, 4183, \ > 4185, 4187, 4190, 4191, 4192, 4193, 4195, 4197, 4240, 4241, 4242, \ > 4243, 4245, 4247, 4260, 4261, 4262, 4263, 4265, 4267, 4280, 4281, \ > 4282, 4283, 4285, 4287, 4290, 4291} > > test1 == test2 > > True > > All that gets very slow for large n, however, so (slightly awkward)... > > Clear[allowed, ok3, better, stick, next3] > allowed[n_Integer? > Positive] := {{4, 6, 8, 9}, {0, 1, 2, 3, 5, 7}}[[Mod[n, 2, 1]]] > ok3[k_, {j_}] := MemberQ[allowed[j], k] > better[k_, j_] := {Min@Complement[allowed[j], Range[0, k]]} > stick[d_List] /; VectorQ[d, IntegerQ] := > Module[{k, firstBad = Position[MapIndexed[ok3, d], False, 1, 1]}, > Which[ > firstBad == {}, d, > firstBad == {{1}}, > If[(k = d[[1]]) > Max@allowed@1, > Min /@ allowed /@ Range[1 + Length@d], > Join[better[k, 1], Min /@ allowed /@ Range[2, Length@d]] > ], > firstBad == {{2}}, If[ > (k = d[[2]]) > Max@allowed@2, > Join[{1 + d[[1]]}, Table[Min@allowed@k, {k, 2, Length@d}]], > Join[{d[[1]]}, better[k, 2], > Min /@ allowed /@ Range[3, Length@d]] > ], > True, firstBad = firstBad[[1, 1]]; If[ > (k = d[[firstBad]]) > Max@allowed@firstBad, > Join[Take[d, firstBad - 2], {1 + d[[firstBad + 1]]}, > Table[Min@allowed@k, {k, firstBad, Length@d}]], > Join[Take[d, firstBad - 1], better[k, firstBad], > Min /@ allowed /@ Range[firstBad + 1, Length@d]] > ] > ] > ] > next3[n_Integer] := FromDigits@FixedPoint[stick, IntegerDigits[n + 1]] > > RandomInteger[{1, 7*10^5}] > next2@% // Timing > next3@%% // Timing > > 194872 > > {5.74494, 404040} > > {0.000277, 404040} > > Bobby > > On Wed, 31 Dec 2008 05:06:40 -0600, Diana <diana.mecum at gmail.com> wrote: > >> Math folks, >> >> I am trying to write an algorithm which will test for a digit within a >> number being composite, i.e. {4, 6, 8, or 9} >> >> For example: >> >> Let's say I start with the number 844. The next number in my sequence >> will be the smallest number greater than 844 which satisfies: >> >> 1) a three digit number with first and third digits composite, and the >> second digit not composite, or a >> 2) a four digit number with first and third digits composite, and the >> second and fourth digits not composite. >> >> The answer will be 854, and I want the algorithm to be able to find >> this. >> >> I may then want to find a number of any specified arbitrary length >> with digits composite or not composite as desired. >> >> Thanks, >> >> Diana >> > > > -- DrMajorBob at longhorns.com