New kind of Weierstrass fractal scaling: Eulerian scales,MacMahon
- To: mathgroup at smc.vnet.net
- Subject: [mg95190] New kind of Weierstrass fractal scaling: Eulerian scales,MacMahon
- From: Roger Bagula <rlbagula at sbcglobal.net>
- Date: Fri, 9 Jan 2009 06:24:17 -0500 (EST)
- References: <gk1rls$os8$1@smc.vnet.net>
This idea is a consequence of the Bernoulli types using the general Pascal row sum products. The Pascal row sum is 2^n which is a regular Self-Similar Weierstrass or Bescovitch-Ursell function. Using n! or Gamma[1+n] or (n+1)! or Gamma[2+n] scales are like scales 2^n and 3^n. 3=2^s gives ( Sierpinski gasket self-similar dimension): s=Log[3]/Log[2] That kind of calculation/ conversion isn't as easy in this new type of scales: FindRoot[Gamma[3] - Gamma[1 + s] == 0, {s, 5/3}] s=2 FindRoot[3*Gamma[3] - 2^s*Gamma[1 + s] == 0, {s, 5/3}] {s -> 1.81782} Traditional Weierstrass fractal scale 2: Clear[c, s, s0, x] s0 = 3/5; c[x_] = Sum[Cos[2^n*x]/2^(s0*n), {n, 0, 20}]; s[x_] = Sum[Sin[2^n*x]/2^(s0*n), {n, 0, 20}]; ParametricPlot[{c[x], s[x]}, {x, -Pi, Pi}, PlotPoints -> 1000, Axes -> False] http://www.geocities.com/rlbagulatftn/2weier.gif Eulerian scale Weierstrass fractal with n! scale: Clear[c, s, s0, x] s0 = 3/5; c[x_] = Sum[Cos[Gamma[1 + n]*x]/Gamma[1 + s0*n], {n, 0, 20}]; s[x_] = Sum[Sin[Gamma[1 + n]*x]/Gamma[1 + s0*n], {n, 0, 20}]; ParametricPlot[{c[x], s[x]}, {x, -Pi, Pi}, PlotPoints -> 1000, Axes -> False] http://www.geocities.com/rlbagulatftn/2eulerian_weier.gif MacMahon type scaling: Clear[c, s, s0, x] s0 = 3/5; c[x_] = Sum[Cos[2^n*Gamma[1 + n]*x]/(2^(s0*n)*Gamma[1 + s0*n]), {n, 0, 20}]; s[x_] = Sum[Sin[2^n*Gamma[1 + n]*x]/(2^(s0*n)*Gamma[1 + s0*n]), {n, 0, 20}]; ParametricPlot[{c[x], s[x]}, {x, -Pi, Pi}, PlotPoints -> 1000, Axes -> False] http://www.geocities.com/rlbagulatftn/2weier_macmahon.gif Mew kind of Bescovitch-Ursell fractal as Eulerian: Clear[f, g, h, k, ff, kk, ll] f[x_] := 0 /; 0 <= x <= 1/3 f[x_] := 6*x - 2 /; 1/3 < x <= 1/2 f[x_] := -6*x + 4 /; 1/2 < x <= 2/3 f[x_] := 0 /; 2/3 < x <= 1 ff[x_] = f[Mod[Abs[x], 1]]; s0 = Log[2]/Log[3]; kk[x_] = Sum[ff[(k + 1)!*x]/Gamma[2 + s0*k], {k, 0, 20}]; ll[x_] = Sum[ff[(k + 1)!*(x + 1/2)]/Gamma[2 + s0*k], {k, 0, 20}]; ga = Table[{kk[n/10000], ll[n/10000]}, {n, 1, 10000}]; ListPlot[ga, Axes -> False, PlotRange -> All] http://www.geocities.com/rlbagulatftn/biscuit_eulerianvonkoch.gif The implication of this type of result is that there are more types of fractal scaling than just the straight integers scales of traditional fractal theory. These ideas are a result of the application of Pascal type Modulo two Sierpinski resy\ults to higher symmetries of combinatorial triangles and the scaling that the row sums ( products) provide. Respectfully, Roger L. Bagula 11759Waterhill Road, Lakeside,Ca 92040-2905,tel: 619-5610814 :http://www.geocities.com/rlbagulatftn/Index.html alternative email: rlbagula at sbcglobal.net