Re: Multiplication of matrices
- To: mathgroup at smc.vnet.net
- Subject: [mg102162] Re: [mg102138] Multiplication of matrices
- From: "Elton Kurt TeKolste" <tekolste at fastmail.us>
- Date: Fri, 31 Jul 2009 05:54:34 -0400 (EDT)
- References: <200907300934.FAA21751@smc.vnet.net>
Qing I cannot reproduce your problem. In[67]:= X = Table[Random[], {i, 1, 2}, {j, 1, 2}] Out[67]= {{0.396285, 0.24559}, {0.536648, 0.487664}} In[68]:= x = Inverse[X] Out[68]= {{7.93479, -3.996}, {-8.73182, 6.44798}} In[69]:= Y = Table[Random[], {i, 1, 2}, {j, 1, 2}] Out[69]= {{0.775017, 0.185159}, {0.816709, 0.544945}} In[71]:= y = Inverse[Y] Out[71]= {{2.00997, -0.68294}, {-3.01235, 2.85857}} In[72]:= Simplify[ Tr[X.Y.x.Y.x.y.X.y.X.y.x.Y.x.Y.X.y.X.y.X.Y.x.Y.x.Y.X.y.X.y.x.Y.x.Y.x.\ y.X.y.X.y.x.Y.x.Y.X.y.X.y.X.Y.x.Y.x.y.X.y.X.y.x.Y.x.Y.x.y.X.y.X.Y.x.Y.\ x.Y.X.y.X.y]] Out[72]= 23586.1 Kurt On Thu, 30 Jul 2009 05:34 -0400, "Qing" <Qing.Zhang.7 at uni.massey.ac.nz> wrote: > Hi: > > I have two 2x2 matrices , X and Y (x, y are the inverses resp.). I need > to evaluate the following expression: > > Simplify[Tr[ > X.Y.x.Y.x.y.X.y.X.y.x.Y.x.Y.X.y.X.y.X.Y.x.Y.x.Y.X.y.X.y.x.Y.x.Y.x.y.X.y.X.\ > y.x.Y.x.Y.X.y.X.y.X.Y.x.Y.x.y.X.y.X.y.x.Y.x.Y.x.y.X.y.X.Y.x.Y.x.Y.X.y.X.y]] > > but for some reason, mathematica can't do it and I need to break it into > the following form: > > Clear[U1, U2, U3, U3, U4, U] > U1 = Simplify[X.Y.x.Y.x.y.X.y.X.y.x.Y.x.Y.X.y.X]; > U2 = Simplify[y.X.Y.x.Y.x.Y.X.y.X.y.x.Y.x.Y.x.y.X.y]; > U3 = Simplify[X.y.x.Y.x.Y.X.y.X.y.X.Y.x.Y.x.y.X.y.X.y.x]; > U4 = Simplify[Y.x.Y.x.y.X.y.X.Y.x.Y.x.Y.X.y.X.y]; > U = Simplify[U1.U2.U3.U4]; > Simplify[Tr[U]] > > I have hundreds of such expression to evaluate, it is time-consuming if I > break every expression by hand. Is there anyone who knows how to write a > function to do this sort of task? > > Hopefully you understand my question. > > Thanks a lot. > > Qing > > > >
- References:
- Multiplication of matrices
- From: "Qing" <Qing.Zhang.7@uni.massey.ac.nz>
- Multiplication of matrices