Re: Integral of Associated Legendre polynomial
- To: mathgroup at smc.vnet.net
- Subject: [mg114838] Re: Integral of Associated Legendre polynomial
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Sun, 19 Dec 2010 05:10:50 -0500 (EST)
Probably not what you are looking for but... seq = Table[ Integrate[LegendreP[n, 2, x]/(1 - x^2), {x, -1, 1}], {n, 20}]; FindSequenceFunction[seq, n] // Simplify (1/2)*(1 + (-1)^n)*n*(1 + n) Table[{n, Integrate[LegendreP[n, 2, x]/(1 - x^2), {x, -1, 1}] == (1/2)*(1 + (-1)^n)*n*(1 + n)}, {n, -5, 5}] {{-5, False}, {-4, False}, {-3, False}, {-2, False}, {-1, True}, {0, True}, {1, True}, {2, True}, {3, True}, {4, True}, {5, True}} Consequently, the result is not true for negative n. For negative n, seq2 = Table[ Integrate[LegendreP[-n, 2, x]/(1 - x^2), {x, -1, 1}], {n, 20}]; FindSequenceFunction[seq2, n] /. n -> -n (1/2)*(-1 + (-1)^(-n))*(-1 - n)*n Combining the two results f[n_Integer] := (1/2)*(1 + Sign[n] (-1)^n)*n*(n + 1) And @@ Table[ Integrate[LegendreP[n, 2, x]/(1 - x^2), {x, -1, 1}] == f[n], {n, -20, 20}] True Bob Hanlon ---- "Dr. C. S. Jog" <jogc at mecheng.iisc.ernet.in> wrote: ============= Hi: When I give the command Assuming[n \[Element] Integers, Integrate[LegendreP[n,2,x]/(1-x^2),{x,-1,1}]] I get LegendreP[n, 2, x] Integrate[------------------, {x, -1, 1}] 2 1 - x instead of getting n(n+1)(1+(-1)^n)/2 However, if I put specific values of n such as 4,5 etc, I do get the correct answer. Regards C. S. Jog