Services & Resources / Wolfram Forums / MathGroup Archive
-----

MathGroup Archive 2010

[Date Index] [Thread Index] [Author Index]

Search the Archive

Re: Mathematica Collect function

  • To: mathgroup at smc.vnet.net
  • Subject: [mg110728] Re: Mathematica Collect function
  • From: "David Park" <djmpark at comcast.net>
  • Date: Sat, 3 Jul 2010 08:19:56 -0400 (EDT)

One of the experts may give you a regular Mathematica method for doing this,
but I would do it with the Presentations package MapLevelParts routine. This
allows us to pick out a list of sub-terms in a sum to operate on, in this
case to factor.

expr0 = ((1 + Sqrt[2]) i - 1)/4*(P10 - P11) - (1 + Sqrt[2] + i)/
     4*(P20 - P21); 
expr1 = Expand[expr0]; 


Needs["Presentations`Master`"] 

Simplify[expr1] 
% // MapLevelParts[Factor, {2, {1, 2}}] 
% // MapLevelParts[Factor, {2, 1, 1, {2, 3}}] 
Distribute[%] 
% === expr0 

giving:

1/4 ((-1 + i + Sqrt[2] i) P10 - (-1 + i + Sqrt[2] i) P11 - (1 + Sqrt[
      2] + i) (P20 - P21)) 

1/4 ((-1 + i + Sqrt[2] i) (P10 - P11) - (1 + Sqrt[2] + i) (P20 - P21)) 

1/4 ((-1 + (1 + Sqrt[2]) i) (P10 - P11) - (1 + Sqrt[2] + i) (P20 - 
      P21)) 

1/4 (-1 + (1 + Sqrt[2]) i) (P10 - P11) - 
 1/4 (1 + Sqrt[2] + i) (P20 - P21) 

True 


David Park
djmpark at comcast.net
http://home.comcast.net/~djmpark/  


From: Minh [mailto:dminhle at gmail.com] 

Given that:
Expand[((1 + Sqrt[2]) i - 1)/4*(P10 - P11) - (1 + Sqrt[2] + i)/
   4*(P20 - P21)]

will output
-(P10/4) + (i P10)/4 + (i P10)/(2 Sqrt[2]) + P11/4 - (i P11)/4 - (
 i P11)/(2 Sqrt[2]) - P20/4 - P20/(2 Sqrt[2]) - (
 i P20)/4 + P21/4 + P21/(2 Sqrt[2]) + (i P21)/4

How do I get from:
-(P10/4) + (i P10)/4 + (i P10)/(2 Sqrt[2]) + P11/4 - (i P11)/4 - (
 i P11)/(2 Sqrt[2]) - P20/4 - P20/(2 Sqrt[2]) - (
 i P20)/4 + P21/4 + P21/(2 Sqrt[2]) + (i P21)/4

back to
((1 + Sqrt[2]) i - 1)/4*(P10 - P11) - (1 + Sqrt[2] + i)/
   4*(P20 - P21)

I've tried using the Collect function as follows:
Collect[-(P10/4) + (i P10)/4 + (i P10)/(2 Sqrt[2]) + P11/4 - (i P11)/
  4 - (i P11)/(2 Sqrt[2]) - P20/4 - P20/(2 Sqrt[2]) - (i P20)/4 + P21/
  4 + P21/(2 Sqrt[2]) + (i P21)/4, {(P10 - P11), (P20 - P21)}]
but it doesn't seem to collect the terms {(P10 - P11), (P20 - P21)}.

Got any suggestions?




  • Prev by Date: Re: Mathematica Collect function
  • Next by Date: Re: boolean variable with contours
  • Previous by thread: Re: Mathematica Collect function
  • Next by thread: Re: Mathematica Collect function