Re: a 4d algebraic geometry problem
- To: mathgroup at smc.vnet.net
- Subject: [mg110779] Re: a 4d algebraic geometry problem
- From: Roger Bagula <roger.bagula at gmail.com>
- Date: Mon, 5 Jul 2010 21:15:08 -0400 (EDT)
- References: <i0sal3$epu$1@smc.vnet.net>
I used a minimal surface embedding of a sphere to get this visualization: x = Cos[t0]*Sin[p0]; y = Sin[t0]*Sin[p0]; z = Cos[p0]; x1 = Re[Integrate[x^2 + (22/16)*x*t + 1/3, {p0, 0, t}]]; y1 = Re[Integrate[y^2 + (22/16)*y*t + 1/3, {p0, 0, t}]]; z1 = Re[Integrate[z^2 + (22/16)*z*t + 1/3, {p0, 0, t}]]; g1 = ParametricPlot3D[{x1, y1, z1}, {t, 0, 2*Pi}, {t0, 0, 2*Pi}] g2 = ParametricPlot3D[{x1, y1, z1}, {t, -2*Pi, 0}, {t0, 0, 2*Pi}] g3 = ParametricPlot3D[{x1, y1, -z1}, {t, 0, 2*Pi}, {t0, -2*Pi, 0}] g4 = ParametricPlot3D[{x1, y1, -z1}, {t, -2*Pi, 0}, {t0, -2*Pi, 0}] Show[{g1, g2}, Boxed -> False, Axes -> False] Show[{g3, g4}, Boxed -> False, Axes -> False] Kind of a cludge, but better than nothing. Roger Bagula