Re: a 4d algebraic geometry problem
- To: mathgroup at smc.vnet.net
- Subject: [mg110782] Re: a 4d algebraic geometry problem
- From: Roger Bagula <roger.bagula at gmail.com>
- Date: Mon, 5 Jul 2010 21:15:47 -0400 (EDT)
- References: <i0sal3$epu$1@smc.vnet.net>
I just now got a better rendering: http://www.flickr.com/photos/fractalmusic/4764898936/ x = Cos[t0]*Sin[p0]; y = Sin[t0]*Sin[p0]; z = Cos[p0]; x1 = Re[Integrate[x^2 + (22/16)*x + 1/3, {p0, 0, t}]]; y1 = Re[Integrate[y^2 + (22/16)*y + 1/3, {p0, 0, t}]]; z1 = Re[Integrate[z^2 + (22/16)*z + 1/3, {p0, 0, t}]]; g1 = ParametricPlot3D[{x1, y1, z1, { EdgeForm[]}}, {t, 0, 2*Pi}, {t0, 0, 2*Pi}, PlotRange -> All, PlotPoints -> {60, 60}, Boxed -> False, Axes -> False] g2 = ParametricPlot3D[{x1, y1, z1, {EdgeForm[]}}, {t, -2*Pi, 0}, {t0, 0, 2*Pi}, PlotRange - > All, \ PlotPoints -> {60, 60}, Boxed -> False, Axes -> False] g3 = ParametricPlot3D[{x1, y1, -z1, {EdgeForm[]}}, {t, 0, 2*Pi}, {t0, -2* Pi, 0}, PlotRange -> All, PlotPoints -> {60, 60}, Boxed -> False, Axes -> False] g4 = ParametricPlot3D[{x1, y1, - z1, {EdgeForm[]}}, {t, -2*Pi, 0}, {t0, -2*Pi, 0}, PlotRange -> All, \ PlotPoints -> {60, 60}, Boxed -> False, Axes -> False] Show[{g1, g2}, Boxed -> False, Axes -> False] Show[{g3, g4}, Boxed -> False, Axes -> False]