Re: Expected value of the Geometric distribution
- To: mathgroup at smc.vnet.net
- Subject: [mg118482] Re: Expected value of the Geometric distribution
- From: Barrie Stokes <Barrie.Stokes at newcastle.edu.au>
- Date: Fri, 29 Apr 2011 07:33:27 -0400 (EDT)
Hi Tonja Since GeometricDistribution is a discrete distribution, you need to be calculating sums, not integrals. PDF[ GeometricDistribution[ p ],k ] Mean[ GeometricDistribution[ p ] ]//Together Sum[ (1-p)^k p,{k,0,\[Infinity]} ] Sum[ (1-p)^k p k,{k,0,\[Infinity]} ] Cheers Barrie >>> On 28/04/2011 at 8:37 pm, in message <201104281037.GAA10803 at smc.vnet.net>, Tonja Krueger <tonja.krueger at web.de> wrote: > Hi all, > I want to calculate expected value of diverse distributions like the > Geometric distribution (for example). > As I understand this, the expected value is the integral of the density > function *x. > But when I try to calculate this: > Integrate[(1-p)^k*p*k,k] > I get this as the answer: > ((1 - p)^k p (-1 + k Log[1 - p]))/Log[1 - p]^2 > Instead of: (1-p)/p. > I would be so grateful if someone could explain to me what I'm doing wrong. > Tonja > ___________________________________________________________ > Empfehlen Sie WEB.DE DSL Ihren Freunden und Bekannten und wir > belohnen Sie mit bis zu 50,- Euro! https://freundschaftswerbung.web.de