Re: Contour ColorFunction in a ParametricPlot
- To: mathgroup at smc.vnet.net
- Subject: [mg120090] Re: Contour ColorFunction in a ParametricPlot
- From: Bob Hanlon <hanlonr at cox.net>
- Date: Fri, 8 Jul 2011 04:51:55 -0400 (EDT)
- Reply-to: hanlonr at cox.net
contours = 6;
ParametricPlot3D[
{Cos[p] Sin[t], Sin[p] Sin[t], Cos[t]},
{p, 0, 2 Pi}, {t, 0, Pi},
PlotPoints -> 200,
Mesh -> None,
ColorFunction -> Function[{x, y, z, p, t},
Hue[Round[Sin[6 p] Sin[6 t], 1/contours]]],
ColorFunctionScaling -> True]
Bob Hanlon
---- "Blandeau M.N." <mnb1f10 at soton.ac.uk> wrote:
=============
Hello,
I looked for this specific question in the archive and I did not find.
I want to create a contour (ie. not smooth) ColorFunction over a parametricplot.
For example:
ParametricPlot3D[ {Cos[ \[Phi]] Sin[\[Theta]],
Sin[\[Phi]] Sin[\[Theta]], Cos[\[Theta]]}, {\[Phi], 0,
2 \[Pi]}, {\[Theta], 0, \[Pi]}, PlotPoints -> 100, Mesh -> None,
ColorFunction ->
Function[{x, y, z, \[Phi], \[Theta]},
Hue[Sin[6 \[Phi]] Sin[6 \[Theta]]]], ColorFunctionScaling -> True]
Here the colorfunction is smooth, what directive should I add to obtain a contour of the colour and to manage the number of contours ?
Thanks in advance.
Mathias Blandeau
From: Blandeau M.N.
Sent: 06 July 2011 14:35
To: 'mathgroup at smc.vnet.net'
Subject: [mg120090] subscription to mathgroup mailing list
Hi,
I would like to be added to the mathgroup mailing list, I am using Mathematica for my PhD and I have several questions to ask.
Thank you in advance
Mathias Blandeau
- Follow-Ups:
- Re: Contour ColorFunction in a ParametricPlot
- From: "Blandeau M.N." <mnb1f10@soton.ac.uk>
- Re: Contour ColorFunction in a ParametricPlot
- From: Heike Gramberg <heike.gramberg@gmail.com>
- Re: Contour ColorFunction in a ParametricPlot