Re: Contour ColorFunction in a ParametricPlot

*To*: mathgroup at smc.vnet.net*Subject*: [mg120111] Re: Contour ColorFunction in a ParametricPlot*From*: Heike Gramberg <heike.gramberg at gmail.com>*Date*: Fri, 8 Jul 2011 04:55:44 -0400 (EDT)*References*: <201107071133.HAA15427@smc.vnet.net>

I'm not sure if this is what you're asking for, but you could play around with Mesh and MeshFunctions. For example With[{meshn = 10, fmin=-1, fmax=1}, ParametricPlot3D[{Cos[\[Phi]] Sin[\[Theta]], Sin[\[Phi]] Sin[\[Theta]], Cos[\[Theta]]}, {\[Phi], 0, 2 \[Pi]}, {\[Theta], 0, \[Pi]}, PlotPoints -> 100, MeshFunctions -> Function[{x, y, z, \[Phi], \[Theta]}, Sin[6 \[Phi]] Sin[6 \[Theta]]], Mesh -> {Table[{i, Hue[Rescale[i, {fmin, fmax}]]}, {i, fmin, fmax, 2/meshn}]}, Lighting -> {{"Ambient", White}}]] This draws meshn contours of Sin[6 \[Phi]] Sin[6 \[Theta] between fmin and fmax where the colour of each contour depends on its value. Heike On 7 Jul 2011, at 12:33, Blandeau M.N. wrote: > Hello, > I looked for this specific question in the archive and I did not find. > > I want to create a contour (ie. not smooth) ColorFunction over a parametricplot. > > For example: > ParametricPlot3D[ {Cos[ \[Phi]] Sin[\[Theta]], > Sin[\[Phi]] Sin[\[Theta]], Cos[\[Theta]]}, {\[Phi], 0, > 2 \[Pi]}, {\[Theta], 0, \[Pi]}, PlotPoints -> 100, Mesh -> None, > ColorFunction -> > Function[{x, y, z, \[Phi], \[Theta]}, > Hue[Sin[6 \[Phi]] Sin[6 \[Theta]]]], ColorFunctionScaling -> True] > > Here the colorfunction is smooth, what directive should I add to obtain a contour of the colour and to manage the number of contours ? > > Thanks in advance. > > Mathias Blandeau > > > From: Blandeau M.N. > Sent: 06 July 2011 14:35 > To: 'mathgroup at smc.vnet.net' > Subject: subscription to mathgroup mailing list > > Hi, > I would like to be added to the mathgroup mailing list, I am using Mathematica for my PhD and I have several questions to ask. > Thank you in advance > > Mathias Blandeau >

**References**:**Contour ColorFunction in a ParametricPlot***From:*"Blandeau M.N." <mnb1f10@soton.ac.uk>