Re: implicit surfaces from older version of Mathematica

*To*: mathgroup at smc.vnet.net*Subject*: [mg119639] Re: implicit surfaces from older version of Mathematica*From*: Heike Gramberg <heike.gramberg at gmail.com>*Date*: Wed, 15 Jun 2011 07:21:40 -0400 (EDT)*References*: <201106071047.GAA05975@smc.vnet.net> <isnllv$n7h$1@smc.vnet.net> <201106141013.GAA06207@smc.vnet.net>

This seems to work better: ContourPlot3D[ Evaluate[(Det[d] Sqrt[Tr[m2]] /. z -> -kz)], {x, -Pi, Pi}, {y, -Pi, Pi}, {kz, -Pi, Pi}, PlotPoints -> 15, MaxRecursion -> 1, Contours -> {-1, 1}, Boxed -> False, Axes -> False] I'm using the fact that Det[m2]==(Det[d])^2 which means Det[m2] = Tr[m2]==1 is equivalent to Det[d] Sqrt[Tr[m2]]==-1 or Det[d] Sqrt[Tr[m2]]==1. Heike. On 14 Jun 2011, at 11:13, Roger Bagula wrote: > Heike Gramberg, > Thank you for your help. > I have done some further experiments using your forms. > I have trouble with edges of the surfaces, > even when I get them connected right: > Clear[ x, y, z, f, g, FermiPlot,d,d,d1,m2] > d = {{z, -x, 0, 0, 0}, > {x, 0, -y, 0, 0}, > {0, y, 0, -z, 0}, > {0, 0, z, 0, -y}, > {0, 0, 0, y, -x}}; > m2 = d.Transpose[d] > f[x_, y_, z_] = Det[m2]*Tr[m2] - 1 > ContourPlot3D[ > f[kx, ky, -kz], {kx, -Pi, Pi}, {ky, -Pi, Pi}, {kz, -Pi, Pi}, > PlotPoints -> 30, Contours -> {0.000001}, Boxed -> False, > Axes -> False] > FermiPlot[energy_] := > ContourPlot3D[ > f[kx, ky, -kz], {kx, -Pi, Pi}, {ky, -Pi, Pi}, {kz, -Pi, Pi}, > PlotPoints -> 20, Contours -> {energy}, Boxed -> False, > Axes -> False]; > Row[Show[FermiPlot[0.000001], ViewPoint -> #, > ImageSize -> 300] & /@ {{0, -0.045, 3.384}, {0.009, -3.331, > 0.597}, {-3.329, 0.088, 0.597}}] > (* decomposition matrix in Killing's vectors*) > d1 = {{1, -1, 0, 0, 0}, > {1, 0, -1, 0, 0}, > {0, 1, 0, -1, 0}, > {0, 0, 1, 0, -1}, > {0, 0, 0, 1, -1}}; > (* Cartan Matrix:) > c = d1.Transpose[d1] > > Roger Bagula >

**References**:**implicit surfaces from older version of Mathematica***From:*Roger Bagula <roger.bagula@gmail.com>

**Re: implicit surfaces from older version of Mathematica***From:*Roger Bagula <roger.bagula@gmail.com>