Re: nested findroot
- To: mathgroup at smc.vnet.net
- Subject: [mg122812] Re: [mg122787] nested findroot
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Fri, 11 Nov 2011 04:54:54 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201111101155.GAA25353@smc.vnet.net>
Since the definitions of f and g use numerical techniques (FindRoot) these definitions should be restricted to numeric arguments. psimax[k_] = ArcCos[1 - k^2/2]; m[k_] = (1 - Cos[psimax[k]])/2; arg[theta_, k_] = ArcSin[Sqrt[(1 - Cos[theta])/(1 - Cos[psimax[k]])]]; y[theta_, k_] = - EllipticF[arg[theta, k], m[k]] + 2 EllipticE[arg[theta, k], m[k]]; f[w_?NumericQ] := Chop[x /. FindRoot[2 y[psimax[x], x] - y[Pi/2, x] == w/2, {x, 1.7}]] g[w_?NumericQ] := Chop[x /. FindRoot[y[Pi/2, x] == w/2, {x, 1}]] Plot[g[w] - 9 f[w], {w, .1, .2}] FindRoot[g[soln] - 9 f[soln] == 0, {soln, .13}] {soln -> 0.131216} Bob Hanlon On Thu, Nov 10, 2011 at 6:55 AM, Anna McCuan <anna.mccuan at gmail.com> wrote: > I'm getting an error finding a root using functions which are defined > using findroot. This happens in spite of the fact that I can graph > the function and see clearly that there is an easy to find root. Does > anyone know how to execute this root search successfully? > > The file is posted publicly at http://www.math.gatech.edu/~mccuan/temp/pr= oblem.nb >
- References:
- nested findroot
- From: Anna McCuan <anna.mccuan@gmail.com>
- nested findroot