Schroedinger EQ
- To: mathgroup at smc.vnet.net
- Subject: [mg122003] Schroedinger EQ
- From: raj kumar <rajesh7796gm at gmail.com>
- Date: Sat, 8 Oct 2011 05:35:45 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
dear esteemed experts, i wonder if somebody can help me i have been trying to find a a certain value of a parameter V that will "match" the logarithmic derivative (of solutions to the time independent Schroedinger eq ) at both sides of a particular point called the matching point. But cannot seem to find the correct V value that will make bc1[V_] = bc2[V_].. ...mathematica keeps giving an error message .See below for the code. any help will be most appreciated a=0.63; A8; j=9/2; L=4; mu=(931.5 (208 1.))/(208+1.); Z=82; Subscript[a, so]=0.5; R=1.25 A^(1/3); Subscript[V, so]=7; Subscript[R, c]=1.25 A^(1/3); Subscript[R, so]=1.1 A^(1/3); V1[x_,V_]:=-(V/(E^((x-R)/a)+1)); V2[x_]:=-((2 ((j+1) j-L (L+1)-3/4) Subscript[V, so] E^((x-Subscript[R, so])/Subscript[a, so]))/ (Subscript[a, so] (E^((x-Subscript[R, so])/Subscript[a, so])+1)^2)); pott[x_,V_]=V1[x,V]+V2[x]; emin=-55; emax= -5; xmax=10; xmin=0.1; xmatch=4.5; e=3.94; eq[V_, x_, x0_] = {-( \!\(\*SuperscriptBox["y", "\[Prime]\[Prime]", MultilineFunction->None]\)[x]/( 2 mu)) + (pott[x, V] + L (L + 1)/(2 mu (x^2))) y[x] == -e y[x], y[x0] == 0, \!\(\*SuperscriptBox["y", "\[Prime]", MultilineFunction->None]\)[x0] == 1/10^6}; y1[V_, x_] := y[x] /. NDSolve[eq[V, x, xmin], y, {x, xmin, xmatch}]; bc1[V_] := \!\( \*SubscriptBox[\(\[PartialD]\), \(x\)]\(y1[x]\)\)/y1[x] /. x -> xmatch; y2[V_, x_] := y[x] /. NDSolve[eq[V, x, xmax], y, {x, xmax, xmatch}]; bc2[V_] := \!\( \*SubscriptBox[\(\[PartialD]\), \(x\)]\(y2[x]\)\)/y2[x] /. x -> xmatch; bc[V_?NumericQ] := bc1[V] - bc2[V]; Vvalue = V /. If[emax == emin, V, FindRoot[bc[V], {V, emin, emax}, AccuracyGoal -> 10, WorkingPrecision -> 20]]; Print["the value of V is =" , Vvalue]