Manipulate in a series of commands
- To: mathgroup at smc.vnet.net
- Subject: [mg122183] Manipulate in a series of commands
- From: Lengyel Tamas <lt648 at hszk.bme.hu>
- Date: Wed, 19 Oct 2011 05:35:08 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
Dear Community, I am faced with a probably very easy problem. At the bottom you can see my code which executes in a single cell once the parameter K is set to an integer number greater than 0. I can't seem to make it Dynamic or use Manipulate, e.g. have a slider or text box where I can change the number K, then have the series of commands executed. Any ideas? Tamás Code: K = 64; Element[n, Integers]; Degen = Piecewise[{{0, n < -K}, {(K - Ceiling[(K - n)/2]), -K <= n <= 0}, {(K - 1 - Floor[n/2] - Ceiling[(K - n)/2]), 0 < n <= K}, {(K - Floor[n/2]), K < n <= 2 K}, {0, n > 2 K}}]; g1 = DiscretePlot[Degen, {n, -K, 2 K}, AxesOrigin -> {-K, 0}, PlotRange -> {{-K, 2 K}, {0, K^2/2.5}}, PlotStyle -> {Thickness[0.01]}, FillingStyle -> RGBColor[0.4, 1, 0.4, .9]]; NonDegen = Piecewise[{{0, n < -K}, {(Ceiling[(K^2 + n^2 - 2*K - 2 n + 2*K*n)/4]), -K <= n <= 0}, {(Ceiling[(K^2 - 6 K - 2 n^2 + 2 n + 4)/4 + Floor[(K*n)/2]]), 0 < n <= K}, {(Floor[(4 K^2 + n*n - 4 K*n)/4]), K < n <= 2 K}, {0, n > 2 K}}]; g2 = DiscretePlot[Degen + NonDegen, {n, -K, 2 K}, AxesOrigin -> {-K, 0}, PlotRange -> {{-K, 2 K}, {0, K^2/2.5}}, PlotStyle -> {Thickness[0.01]}, FillingStyle -> RGBColor[0.01, 0.01, 2, 1]]; g3 = DiscretePlot[((K/2 - 1) + (K^2 - 6*K + 2*K*n - 2 n^2 + 2 n + 4)/ 4), {n, 1, K}, AxesOrigin -> {-K, 0}, PlotRange -> {{-K, 2 K}, {0, K^2/2.5}}, ColorFunction -> (RGBColor[#2, 0.2, 1 - #2] &), FillingStyle -> {Directive[{Thickness[0.01], Opacity[0.9] }]}, Filling -> Axis]; Show[g2, g3, g1, AxesLabel -> {"n", "Number of FWM products"}, LabelStyle -> Directive[Black, Bold, 14]] max = FindMaxValue[((K/2 - 1) + (K^2 - 6*K + 2*K*n - 2 n^2 + 2 n + 4)/ 4), n]; Floor[max]