Re: Integral points on elliptic curves
- To: mathgroup at smc.vnet.net
- Subject: [mg122434] Re: Integral points on elliptic curves
- From: Andrzej Kozlowski <akoz at mimuw.edu.pl>
- Date: Fri, 28 Oct 2011 05:36:27 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <j80q8p$adb$1@smc.vnet.net> <j862sg$5v7$1@smc.vnet.net> <201110262140.RAA00128@smc.vnet.net>
On 26 Oct 2011, at 23:40, Costa Bravo wrote: > Emu write: >>> >>> FindInstance[y^3 - x^2 == 1641843, {x, y}, Integers] >>> >>> if FindInstance doesn't work what inspite??? >>> > >> How about something as naive as >> >> In[31]:= Cases[Join @@ Table[{x, y, y^3 - x^2 == 1641843}, {x, 1, >> 1000}, {y, 1, 1000}], {__, True}] >> Out[31]= {{468, 123, True}} > > In[51]:= AbsoluteTiming[ > Cases[Join @@ Table[{x, y, y^3 - x^2 == 1641843}, {x, 1, 1000}, {y, 1, > 1000}], {__, True}]] > > Out[51]= {4.6718750, {{468, 123, True}}} > > better > > In[60]:= k = 1641843; > AbsoluteTiming[y0 = Ceiling[k^(1/3)]; > Do[If[FractionalPart[Sqrt[y^3 - k]] == 0,Print[Sqrt[y^3 - k], " ", y]], {y, y0, 10000}]] > > 468 123 > 11754 519 > > Out[61]= {3.4375000, Null} > > -- > Costa > This is hardly impressive when compared with: Solve[y^3 - x^2 == 1641843 && 0 < x && 0 < y < 10^3, {x, y}, Integers] // Timing {0.383947,{{x->468,y->123},{x->11754,y->519}}} Andrzej Kozlowski
- References:
- Re: Integral points on elliptic curves
- From: Costa Bravo <q13a27tt@aol.com>
- Re: Integral points on elliptic curves