Re: Integral points on elliptic curves
- To: mathgroup at smc.vnet.net
- Subject: [mg122472] Re: Integral points on elliptic curves
- From: Costa Bravo <q13a27tt at aol.com>
- Date: Sat, 29 Oct 2011 07:12:50 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <j80q8p$adb$1@smc.vnet.net> <j862sg$5v7$1@smc.vnet.net> <201110262140.RAA00128@smc.vnet.net> <j8dthn$kga$1@smc.vnet.net>
Andrzej Kozlowski wrote: >> In[60]:= k = 1641843; >> AbsoluteTiming[y0 = Ceiling[k^(1/3)]; >> Do[If[FractionalPart[Sqrt[y^3 - k]] == 0,Print[Sqrt[y^3 - k], " ", y]], {y, y0, 10000}]] >> >> 468 123 >> 11754 519 >> >> Out[61]= {3.4375000, Null} >> >> -- >> Costa >> > > This is hardly impressive when compared with: > > Solve[y^3 - x^2 == 1641843&& 0< x&& 0< y< 10^3, {x, y}, > Integers] // Timing > > {0.383947,{{x->468,y->123},{x->11754,y->519}}} > > Andrzej Kozlowski O , You have y<10^3 I have y <= 10 000 !! Solve[y^3 - x^2 == 1641843&& 0< x&& 0< y< 10^4, {x, y}, Integers] // Timing {10.22, {{x -> 468, y -> 123}, {x -> 11754, y -> 519}}} This is hardly impressive ;) If in your algorithm, we take y< 2*10^4 -> Solve::svars ! -- Costa
- Follow-Ups:
- Re: Integral points on elliptic curves
- From: Andrzej Kozlowski <akoz@mimuw.edu.pl>
- Re: Integral points on elliptic curves
- References:
- Re: Integral points on elliptic curves
- From: Costa Bravo <q13a27tt@aol.com>
- Re: Integral points on elliptic curves