Re: Mesh Problem with mathematica 8

*To*: mathgroup at smc.vnet.net*Subject*: [mg129235] Re: Mesh Problem with mathematica 8*From*: Roland Franzius <roland.franzius at uos.de>*Date*: Sun, 23 Dec 2012 13:15:45 -0500 (EST)*Delivered-to*: l-mathgroup@mail-archive0.wolfram.com*Delivered-to*: l-mathgroup@wolfram.com*Delivered-to*: mathgroup-newout@smc.vnet.net*Delivered-to*: mathgroup-newsend@smc.vnet.net*References*: <kb6s7l$22u$1@smc.vnet.net>

Am 23.12.2012 13:08, schrieb mj at marcjohnson.fr: > Dear everyone, > > I currently have problem with "mathematica 8" > > I am trying to produce a clean .STL for rapid prototyping > > However "mathematica 8" optimize meshes by uniforming the polygon size along the surfaces, > > while I need the meshes to follow exactly the net of the coordinate lines of the parametrization. > > Does anyone know how to solve that problem ? You may specify the mesh coordinate as lists, even variable ones. This one will draw a sphere with variable mesh in longitude (Vs 6) Manipulate[ ParametricPlot3D[ {Sin[t] Cos[p], Sin[t] Sin[p], Cos[t]}, {t, 0, \[Pi]}, {p, 0, 2 \[Pi]}, Mesh -> {Range[0.3 \[Pi], 0.7 \[Pi], \[Pi]/12], {0, 1, 2, 3, 4, 6} + x}, PlotStyle -> {Opacity[0.8]}, Lighting -> {{"Point", ColorData["Pastel"][0.7], {2, -12, 12}}}], {x, 0, 12}] -- Roland Franzius