Re: Fast vs. Slow NonlinearModelFit models
- To: mathgroup at smc.vnet.net
- Subject: [mg123990] Re: Fast vs. Slow NonlinearModelFit models
- From: "Dan O'Brien" <danobrie at gmail.com>
- Date: Wed, 4 Jan 2012 05:02:48 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201112211152.GAA02211@smc.vnet.net> <201112220926.EAA13844@smc.vnet.net>
Ok this idea occurred to me, but I can't expand it so that it's a good approximation over a large enough domain. Any other thoughts? On 12/22/2011 3:26 AM, DrMajorBob wrote: > You might fit using a short Series expansion in place of Erfc, then use > the fitted parameters as initial guess in a second fit for the exact model. > > Bobby > > On Wed, 21 Dec 2011 05:52:34 -0600, Dan O'Brien<danobrie at gmail.com> wrote: > >> Hello, >> >> I'm wondering if anyone has a suggestion for speeding up the >> NonlinearModelFit computation for model2 below. The model used to fit >> my experimental data can be a simple complex function who's magnitude >> squared is a lorentzian (model1), or, some may argue a more complete >> model is the same function convolved with a gaussian which gives a >> function that involves the complementary error function (model2), the >> Voigt profile. As indicated below with AbsoluteTiming using these two >> different models show VERY different computational times. I imagine it >> has something to do with mathematica's internal implementation of Erfc >> >> In[1]:= $Version >> (*Lorentzian Lineshape*) >> \[Chi]R[\[Omega]_, {A_, \[Phi]A_, \[CapitalGamma]_, \[Omega]v_}] := ( >> A E^(I \[Phi]A))/(-(\[Omega] - \[Omega]v) - I \[CapitalGamma]); >> >> (*Voigt Lineshape*) >> z[\[Sigma]_, \[CapitalGamma]_, \[Omega]v_, \[Omega]_] := (\[Omega] - \ >> \[Omega]v + I \[CapitalGamma])/(Sqrt[2] \[Sigma]) >> FadeevaF[z_] := Exp[-z^2] Erfc[-I z] >> IH\[Chi]R[\[Omega]_, {\[Sigma]_, >> A_, \[Phi]A_, \[CapitalGamma]_, \[Omega]v_}] := >> I Sqrt[\[Pi]/2] ( >> A E^(I \[Phi]A))/\[Sigma] FadeevaF[ >> z[\[Sigma], \[CapitalGamma], \[Omega]v, \[Omega]]] >> (*Redefine functions so A is peak amplitude of the function magnitude \ >> squared*) >> A\[Chi]R[\[Omega]_, {\[Sigma]_, >> A_, \[Phi]A_, \[CapitalGamma]_, \[Omega]v_}] := \[Chi]R[ \[Omega], \ >> {Sqrt[Abs[A]] Abs[\[CapitalGamma]], \[Phi]A, >> Abs[\[CapitalGamma]], \[Omega]v}] >> AIH\[Chi]R[\[Omega]_, {\[Sigma]_, >> A_, \[Phi]A_, \[CapitalGamma]_, \[Omega]v_}] := >> IH\[Chi]R[\[Omega], {\[Sigma], ( >> Sqrt[Abs[A]] E^(-(1/2) \[CapitalGamma]^2/\[Sigma]^2) Sqrt[2/\[Pi]] >> Abs[\[Sigma]])/ >> Erfc[Abs[\[CapitalGamma]]/( >> Sqrt[2] Abs[\[Sigma]])], \[Phi]A, \[CapitalGamma], \[Omega]v}] >> (*Generate data with noise*) >> dataplot = >> ListPlot[data = >> Table[{\[Omega], >> Abs[AIH\[Chi]R[\[Omega], {4, 1.1, 0, 2.1, 0}] + >> AIH\[Chi]R[\[Omega], {4, .6, \[Pi], 2.1, 18}]]^2 + >> RandomReal[{-0.05, 0.05}]}, {\[Omega], -30, 50, .5}], >> Joined -> True] >> (*Models*) >> model1 = Abs[ >> A\[Chi]R[#, {4, a1, 0, \[CapitalGamma]1, \[Omega]vo1}] + >> A\[Chi]R[#, {4, a2, \[Pi], \[CapitalGamma]2, \[Omega]vo2}]]^2&; >> model2 = >> Abs[AIH\[Chi]R[#, {4, a1, 0, \[CapitalGamma]1, \[Omega]vo1}] + >> AIH\[Chi]R[#, {4, a2, \[Pi], \[CapitalGamma]2, \[Omega]vo2}]]^2&; >> >> (*Fit*) >> AbsoluteTiming[ >> mod1 = NonlinearModelFit[data, >> model1[\[Omega]], {{a1, 1}, {\[CapitalGamma]1, 2}, {\[Omega]vo1, >> 1}, {a2, .8}, {\[CapitalGamma]2, 2}, {\[Omega]vo2, >> 15}}, \[Omega]]][[1]] >> AbsoluteTiming[ >> mod2 = NonlinearModelFit[data, >> model2[\[Omega]], {{a1, 1}, {\[CapitalGamma]1, 2}, {\[Omega]vo1, >> 1}, {a2, .8}, {\[CapitalGamma]2, 2}, {\[Omega]vo2, >> 15}}, \[Omega]]][[1]] >> >> Show[{dataplot, >> Plot[{Normal[mod1[\[Omega]]], >> Normal[mod2[\[Omega]]]}, {\[Omega], -30, 50}]}] >> >> Out[1]= "8.0 for Microsoft Windows (32-bit) (October 6, 2011)" >> >> Out[8]=****Plot Snipped >> >> Out[11]= 0.0390625 *Here is AbsoluteTiming for model1* >> >> Out[12]= 75.0078125 *Here is AbsoluteTiming for model2* >> >> Out[13]=****Plot Snipped >