Re: Vectors
- To: mathgroup at smc.vnet.net
- Subject: [mg124259] Re: Vectors
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Sat, 14 Jan 2012 17:14:13 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- References: <201201140757.CAA01372@smc.vnet.net>
r = {Reduce[{x - 1 == (y + 1)/2 == (z - 3)/h, h != 0}, {h, y}, Backsubstitution -> True] // ToRules} {{z -> 3, x -> 1, y -> -1}, {h -> (-3 + z)/(-1 + x), y -> -3 + 2*x}} h /. r[[2]] (-3 + z)/(-1 + x) eqns = {6 x - 2 y + z == 11, x - 1 == (y + 1)/2}; parametricLine[x_] = {x, y, z} /. (Reduce[eqns, {y, z}] // ToRules) {x, -3 + 2 x, 5 - 2 x} Show[ ContourPlot3D[Evaluate[eqns], {x, -5, 5}, {y, -10, 10}, {z, -10, 10}], ParametricPlot3D[parametricLine[x], {x, -5, 5}, PlotStyle -> {Darker[Blue], AbsoluteThickness[4]}], AxesLabel -> {x, y, z}] Bob Hanlon On Sat, Jan 14, 2012 at 2:57 AM, Harry Har <harryhar800 at gmail.com> wrote: > Hi All, > > I'm a math senior high school teacher, and I wish to understand how > using mathematica 7 to find "h" and the intersection point between the > plane 6x-2y+z=11 which contains the line x-1 = (y+1)/2 = (z-3)/h. Also > how to plot/show it visually in 3D graph. > > Many thank's. > > Harry. >
- References:
- Vectors
- From: Harry Har <harryhar800@gmail.com>
- Vectors