Re: Numerical expression
- To: mathgroup at smc.vnet.net
- Subject: [mg128813] Re: Numerical expression
- From: "Massimo" <linusx++ at mail.com>
- Date: Wed, 28 Nov 2012 03:15:54 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20121126042617.44760687B@smc.vnet.net> <k91u1k$5k8$1@smc.vnet.net>
"Dave Snead" <dsnead6 at charter.net> ha scritto nel messaggio news:k91u1k$5k8$1 at smc.vnet.net... > Adding the necessary parentheses: > ((9 (3)^(1/2) + 4 (23)^(1/2))^(1/3) + (9 (3)^(1/2) + 4 (23)^(1/2))^(1/ > 3))/(3)^(1/2) > this comes out to > (2*(9*Sqrt[3] + 4*Sqrt[23])^(1/3))/Sqrt[3] > > (2*(9*Sqrt[3] + 4*Sqrt[23])^(1/3))/Sqrt[3]//N > gives > 3.76887 > So it's not 1. Thank you all for your anwers. I was wrong with a minus sign. The correct expression is: ((9 (3)^(1/2) + 4 (23)^(1/2))^(1/3) + (9 (3)^(1/2) - 4 (23)^(1/2))^(1/ 3))/(3)^(1/2) With the RealOnly package I get the Real result that I was searching for. FullSimplify[((9 (3)^(1/2) + 4 (23)^(1/2))^(1/3) + (9 (3)^(1/2) - 4 (23)^(1/2))^(1/3))/(3)^(1/2)] == 1 Now I ask you how to get the same result using online WolframAlpha. Thanks again. __________ Informazioni da ESET Smart Security, versione del database delle firme digitali 7736 (20121127) __________ Il messaggio è stato controllato da ESET Smart Security. www.nod32.it
- References:
- Numerical expression
- From: "Massimo" <linusx++@mail.com>
- Numerical expression