Re: Color according to concavity
- To: mathgroup at smc.vnet.net
- Subject: [mg128843] Re: Color according to concavity
- From: Sergio Miguel Terrazas Porras <sterraza at uacj.mx>
- Date: Fri, 30 Nov 2012 05:55:05 -0500 (EST)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <20121129110446.BF9AD688F@smc.vnet.net>,<CAEtRDSeUG1KxS_Zog=1r+w8jDuY1_CDhZKHVTO9jDQ-5ypgJ7Q@mail.gmail.com>
Thank you, Bob and Murray. ________________________________________ Desde: Bob Hanlon [hanlonr357 at gmail.com] Enviado el: jueves, 29 de noviembre de 2012 09:52 a.m. Hasta: Sergio Miguel Terrazas Porras CC: mathgroup at smc.vnet.net Asunto: Re: Color according to concavity f[x_] = Sin[x] Cos[2 x]; Plot[f[x], {x, 0, 4 Pi}, ColorFunction -> Function[{x, y}, If[f''[x] < 0, Red, Blue]], ColorFunctionScaling -> False] Bob Hanlon On Thu, Nov 29, 2012 at 6:04 AM, Sergio Miguel Terrazas Porras <sterraza at uacj.mx> wrote: > > Dear fellows at mathgroup: > > > > I want to plot a function with the color of the parts of the curve accord= ing to concavity, say Red when concve down an blue when concave up. > > > > I can do it by brute force, finding whwn the second derivative is cero, a= nd then finding the sign of it in the different intervals, etc. This for pa= rticular examples. > > > > But, is there a way to use the second derivative as part of a ColorFuncti= on, or something like that? > > > > Thanks > >=
- References:
- Color according to concavity
- From: Sergio Miguel Terrazas Porras <sterraza@uacj.mx>
- Color according to concavity