Re: cubic equation solver
- To: mathgroup at smc.vnet.net
- Subject: [mg130250] Re: cubic equation solver
- From: "Kevin J. McCann" <kjm at KevinMcCann.com>
- Date: Fri, 29 Mar 2013 05:55:31 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-newout@smc.vnet.net
- Delivered-to: mathgroup-newsend@smc.vnet.net
- References: <kj0tko$iiv$1@smc.vnet.net>
These ARE the exact roots, although not in a very convenient form. If you plug them back in to the LHS, you get {0,0,0}. Kevin On 3/28/2013 4:05 AM, Elim Qiu wrote: > x^3 + (=E2=88=9A6 + 2=E2=88=9A3 + 2=E2=88=9A2 -9)x + 2=E2=88=9A3 -=E2=88=9A2 -2 = 0 > has exact roots =E2=88=9A2-2, =E2=88=9A3-=E2=88=9A2, 2-=E2=88=9A3 > > But Mathematica says: > > Solve[x^3 + (Sqrt[6] + 2 Sqrt[3] + 2 Sqrt[2] - 9) x + 2 Sqrt[3] - > Sqrt[2] - 2 == 0, x] > > {{x -> (1/ > 2 (18 + 9 Sqrt[2] - 18 Sqrt[3] + > I Sqrt[3 (4662 - 1252 Sqrt[2] - 1296 Sqrt[3] - > 264 Sqrt[6])]))^(1/3)/3^( > 2/3) - (-9 + 2 Sqrt[2] + 2 Sqrt[3] + Sqrt[ > 6])/(3/2 (18 + 9 Sqrt[2] - 18 Sqrt[3] + > I Sqrt[3 (4662 - 1252 Sqrt[2] - 1296 Sqrt[3] - > 264 Sqrt[6])]))^( > 1/3)}, {x -> -(((1 + I Sqrt[3]) (1/ > 2 (18 + 9 Sqrt[2] - 18 Sqrt[3] + > I Sqrt[3 (4662 - 1252 Sqrt[2] - 1296 Sqrt[3] - > 264 Sqrt[6])]))^(1/3))/( > 2 3^(2/3))) + ((1 - I Sqrt[3]) (-9 + 2 Sqrt[2] + 2 Sqrt[3] + > Sqrt[6]))/( > 2^(2/3) (3 (18 + 9 Sqrt[2] - 18 Sqrt[3] + > I Sqrt[3 (4662 - 1252 Sqrt[2] - 1296 Sqrt[3] - > 264 Sqrt[6])]))^( > 1/3))}, {x -> -(((1 - I Sqrt[3]) (1/ > 2 (18 + 9 Sqrt[2] - 18 Sqrt[3] + > I Sqrt[3 (4662 - 1252 Sqrt[2] - 1296 Sqrt[3] - > 264 Sqrt[6])]))^(1/3))/( > 2 3^(2/3))) + ((1 + I Sqrt[3]) (-9 + 2 Sqrt[2] + 2 Sqrt[3] + > Sqrt[6]))/( > 2^(2/3) (3 (18 + 9 Sqrt[2] - 18 Sqrt[3] + > I Sqrt[3 (4662 - 1252 Sqrt[2] - 1296 Sqrt[3] - > 264 Sqrt[6])]))^(1/3))}} >