Re: Finding branches where general solution is possible
- To: mathgroup at smc.vnet.net
- Subject: [mg131883] Re: Finding branches where general solution is possible
- From: Narasimham <mathma18 at gmail.com>
- Date: Wed, 23 Oct 2013 23:45:14 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
> Am Mittwoch, 16. Oktober 2013 10:46:06 UTC+2 schrieb > Narasimham: > > For following function with period 2 Pi in which > branches is it possible to get a general solution? > > Narasimham > > > > DSolve[{si''[th] Tan[si[th]]==(1+si'[th]) > (1+2si'[th]),si[0]==Pi/4 },si,th] > > > > NDSolve[{si''[th] Tan[si[th]]==(1+si'[th]) > (1+2si'[th]),si'[0]==0,si[0]==Pi/4},si,{th,0,6Pi}]; > > > > SI[u_]=si[u]/.First[%];Plot[SI[th],{th,0,6Pi}] > > DSolve::bvnul: For some branches of the general > solution, the given boundary conditions lead to an > empty solution.>> > > Version 8 of Mathematica has no difficulty in > DSolve-ing the equation generally. > The solution is given in terms of InverseFunction as > follows: > > In[1]:= eq = > Derivative[2][s][t] == > Cot[s[t]]*(1 + Derivative[1][s][t])*(1 + > + 2*Derivative[1][s][t]) > > Out[1]= Derivative[2][s][t] == > Cot[s[t]]*(1 + Derivative[1][s][t])*(1 + > + 2*Derivative[1][s][t]) > > In[2]:= DSolve[eq, s[t], t] > > Out[2]= { > {s[t] -> > InverseFunction[ > 2*(-((I*E^C[1]*Cos[#1/2]^3* > Log[2*I*E^C[1]*Cos[#1] - > Sqrt[2]*Cos[#1/2]^2* > Sqrt[(-2 + E^(2*C[1]) - > -2 + E^(2*C[1]) - E^(2*C[1])*Cos[2*#1])* > Sec[#1/2]^4]]* > > Sqrt[(-(2 - E^(2*C[1]) + > - E^(2*C[1]) + E^(2*C[1])*Cos[2*#1]))* > Sec[#1/2]^4]*Sin[#1/2])/ > Sqrt[(-E^(2*C[1]))*(2 - E^(2*C[1]) + > E^(2*C[1])*Cos[2*#1])*Sin[#1]^2]) - > ])*Sin[#1]^2]) - #1/2) & ][ > t + C[2]]}, > {s[t] -> > InverseFunction[-2*(-((I*E^C[1]*Cos[#1/2]^3* > Log[2*I*E^C[1]*Cos[#1] - > Sqrt[2]*Cos[#1/2]^2* > Sqrt[(-2 + E^(2*C[1]) - > -2 + E^(2*C[1]) - E^(2*C[1])*Cos[2*#1])* > Sec[#1/2]^4]]* > > Sqrt[(-(2 - E^(2*C[1]) + > - E^(2*C[1]) + E^(2*C[1])*Cos[2*#1]))* > Sec[#1/2]^4]*Sin[#1/2])/ > Sqrt[(-E^(2*C[1]))*(2 - E^(2*C[1]) + > E^(2*C[1])*Cos[2*#1])*Sin[#1]^2]) + > ])*Sin[#1]^2]) + #1/2) & ][ > t + C[2]]}} > > Best regards, > Wolfgang Thanks Wolfgang, I am having difficulty in simplifying this Inverse periodic function for a given boundary condition at t = 0 for #1. E.g., can I get a closed form/general expression for s as a function of t, at least for boundary condition s[0] == Pi/2 ? ... so as to be able to plot the numerical case given from that expression ? Regards Narasimham