Re: Principal Components
- To: mathgroup at smc.vnet.net
- Subject: [mg131880] Re: Principal Components
- From: Bob Hanlon <hanlonr357 at gmail.com>
- Date: Wed, 23 Oct 2013 23:44:14 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <20131022044958.08F3C6A23@smc.vnet.net>
Covariance is the default method $Version "9.0 for Mac OS X x86 (64-bit) (January 24, 2013)" Options[PrincipalComponents] {Method -> "Covariance"} mat = {{1., 2}, {2, 3}, {4, 10}}; pc1 = PrincipalComponents[mat] {{3.27053, 0.285293}, {1.99969, -0.335165}, {-5.27023, 0.0498715}} pc1 == PrincipalComponents[mat, Method -> "Covariance"] == PrincipalComponents[pc1] == PrincipalComponents[pc1, Method -> "Covariance"] True pc2 = PrincipalComponents[mat, Method -> "Correlation"] {{1.10388, 0.130549}, {0.478746, -0.170139}, {-1.58262, 0.0395904}} pc2 == PrincipalComponents[pc2] == PrincipalComponents[pc2, Method -> "Covariance"] True Bob Hanlon On Tue, Oct 22, 2013 at 12:49 AM, pw <p.willis at telus.net> wrote: > > Hello, > > The function 'PrincipalComponents' returns the the first principal > components vector of a group of input vectors. > > Question 1.) Is it possible to define Method->"covariance" or is > correlation the only PC technique available? > > Question 2.) How can I generate an inverse PC transform from my > PrincipalComponents output? > > > Thanks, > > > Peter > >
- References:
- Principal Components
- From: pw <p.willis@telus.net>
- Principal Components