Re: Finding branches where general solution is possible
- To: mathgroup at smc.vnet.net
- Subject: [mg131891] Re: Finding branches where general solution is possible
- From: "Dr. Wolfgang Hintze" <weh at snafu.de>
- Date: Mon, 28 Oct 2013 00:39:28 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <l4a4cr$af9$1@smc.vnet.net>
Am Donnerstag, 24. Oktober 2013 05:32:43 UTC+2 schrieb Narasimham: > > Am Mittwoch, 16. Oktober 2013 10:46:06 UTC+2 schrieb > > > Narasimham: > > > > For following function with period 2 Pi in which > > > branches is it possible to get a general solution? > > > > Narasimham > > > > > > > > DSolve[{si''[th] Tan[si[th]]==(1+si'[th]) > > > (1+2si'[th]),si[0]==Pi/4 },si,th] > > > > > > > > NDSolve[{si''[th] Tan[si[th]]==(1+si'[th]) > > > (1+2si'[th]),si'[0]==0,si[0]==Pi/4},si,{th,0,6Pi}]; > > > > > > > > SI[u_]=si[u]/.First[%];Plot[SI[th],{th,0,6Pi}] > > > > DSolve::bvnul: For some branches of the general > > > solution, the given boundary conditions lead to an > > > empty solution.>> > > > > > > Version 8 of Mathematica has no difficulty in > > > DSolve-ing the equation generally. > > > The solution is given in terms of InverseFunction as > > > follows: > > > > > > In[1]:= eq = > > > Derivative[2][s][t] == > > > Cot[s[t]]*(1 + Derivative[1][s][t])*(1 + > > > + 2*Derivative[1][s][t]) > > > > > > Out[1]= Derivative[2][s][t] == > > > Cot[s[t]]*(1 + Derivative[1][s][t])*(1 + > > > + 2*Derivative[1][s][t]) > > > > > > In[2]:= DSolve[eq, s[t], t] > > > > > > Out[2]= { > > > {s[t] -> > > > InverseFunction[ > > > 2*(-((I*E^C[1]*Cos[#1/2]^3* > > > Log[2*I*E^C[1]*Cos[#1] - > > > Sqrt[2]*Cos[#1/2]^2* > > > Sqrt[(-2 + E^(2*C[1]) - > > > -2 + E^(2*C[1]) - E^(2*C[1])*Cos[2*#1])* > > > Sec[#1/2]^4]]* > > > > > > Sqrt[(-(2 - E^(2*C[1]) + > > > - E^(2*C[1]) + E^(2*C[1])*Cos[2*#1]))* > > > Sec[#1/2]^4]*Sin[#1/2])/ > > > Sqrt[(-E^(2*C[1]))*(2 - E^(2*C[1]) + > > > E^(2*C[1])*Cos[2*#1])*Sin[#1]^2]) - > > > ])*Sin[#1]^2]) - #1/2) & ][ > > > t + C[2]]}, > > > {s[t] -> > > > InverseFunction[-2*(-((I*E^C[1]*Cos[#1/2]^3* > > > Log[2*I*E^C[1]*Cos[#1] - > > > Sqrt[2]*Cos[#1/2]^2* > > > Sqrt[(-2 + E^(2*C[1]) - > > > -2 + E^(2*C[1]) - E^(2*C[1])*Cos[2*#1])* > > > Sec[#1/2]^4]]* > > > > > > Sqrt[(-(2 - E^(2*C[1]) + > > > - E^(2*C[1]) + E^(2*C[1])*Cos[2*#1]))* > > > Sec[#1/2]^4]*Sin[#1/2])/ > > > Sqrt[(-E^(2*C[1]))*(2 - E^(2*C[1]) + > > > E^(2*C[1])*Cos[2*#1])*Sin[#1]^2]) + > > > ])*Sin[#1]^2]) + #1/2) & ][ > > > t + C[2]]}} > > > > > > Best regards, > > > Wolfgang > > > > > > Thanks Wolfgang, I am having difficulty in simplifying this Inverse perio= dic function for a given boundary condition at t = 0 for #1. E.g., can I = get a closed form/general expression for s as a function of t, at least for= boundary condition s[0] == Pi/2 ? ... so as to be able to plot the num= erical case given from that expression ? > > > > Regards > > Narasimham I'm always having some Problems with InverseFunction. In this case I proceeded as in the following related example (* here is an expression including InverseFunction *) In[4]:= ss = InverseFunction[(1/ 2)*((a*Log[ Sqrt[2]*Sqrt[-a^2]*Cos[#1] + Sqrt[-2 + a^2 - a^2*Cos[2*#1]]])/ Sqrt[-a^2] + #1) & ][-(t/2) + C[1]]; (* the next line inverts the function *) In[2]:= t[s_] := -2*First[List @@ ss[[0]]][s] (* and here comes the inverted function for further use *) In[3]:= t[s] Out[3]= -s - (a* Log[Sqrt[2]*Sqrt[-a^2]*Cos[s] + Sqrt[-2 + a^2 - a^2*Cos[2*s]]])/ Sqrt[-a^2] Hope this helps. Best regards, Wolfgang