Re: Finding branches where general solution is possible
- To: mathgroup at smc.vnet.net
- Subject: [mg131908] Re: Finding branches where general solution is possible
- From: Roland Franzius <roland.franzius at uos.de>
- Date: Mon, 28 Oct 2013 23:24:56 -0400 (EDT)
- Delivered-to: l-mathgroup@mail-archive0.wolfram.com
- Delivered-to: l-mathgroup@wolfram.com
- Delivered-to: mathgroup-outx@smc.vnet.net
- Delivered-to: mathgroup-newsendx@smc.vnet.net
- References: <l3ljoe$jt5$1@smc.vnet.net>
Am 16.10.2013 10:46, schrieb Narasimham: > For following function with period 2 Pi in which branches is it possible to get a general solution? > > Regards > Narasimham > > DSolve[{si''[th] Tan[si[th]]==(1+si'[th]) (1+2si'[th]),si[0]==Pi/4 },si,th] > NDSolve[{si''[th] Tan[si[th]]==(1+si'[th]) (1+2si'[th]),si'[0]==0,si[0]==Pi/4},si,{th,0,6Pi}]; > SI[u_]=si[u]/.First[%];Plot[SI[th],{th,0,6Pi}] > > DSolve::bvnul: For some branches of the general solution, the given boundary conditions lead to an empty solution.>> > The standard method of separation of variables leads to elliptic integrals. You may fiddle around with the following result on the Riemann surface of the arctan function family living on a doubly infinity branched surface around the poles of the integrand 1/(1+z^2 ) at z=+-I as a sum of two logarithms. Setting si=x and si' = v v' /((1 + v) (1 + 2 v)) = Cot[x] In: Integrate[1/((1 + v) (2 + v)), v] == Integrate[Cot[x], x] Out: Log[1 + v] - Log[2 + v] == Log[Sin[x]] In: D[ Log[1 + v] - Log[2 + v], v] // Together Out: 1/((1 + v) (2 + v)) The true genral indefinite integrals are of course Log[Abs[(1 + v)/(1 + 2 v)]] == Log[Abs[Sin[x]]] + C[1] or exponentiated on both sides (1 + v)/(1 + 2 v) = C[1] Sin[x] v != {-1/2,-1} In: Solve[(1 + (dx/dt))/(1 + 2 (dx/dt)) == C[1] Sin[x], dt] Out: {{dt -> (dx - 2 dx C[1] Sin[x])/(-1 + C[1] Sin[x])}} In: t -> C[2] + Integrate[(1 - 2 C[1] Sin[x])/(-1 + C[1] Sin[x]), x] Out: t -> C[2] -2 x - (2 ArcTan[ (C[1] - Tan[x/2])/Sqrt[1 - C[1]^2] ]) / Sqrt[1 - C[1]^2] -- Roland Franzius