RE: Expand Exp[a(b-c)]
- To: mathgroup at smc.vnet.net
- Subject: [mg16988] RE: [mg16940] Expand Exp[a(b-c)]
- From: "Ersek, Ted R" <ErsekTR at navair.navy.mil>
- Date: Sat, 10 Apr 1999 02:13:28 -0400
- Sender: owner-wri-mathgroup at wolfram.com
Cyril Fisher wrote: ----------------- How can I expand Exp[a(b+c)] to E^(a b) E^(-a c). There should be active a rule, which re-evaluate expanded result back to E^(a b-a c). PowerExpand does not work in this case. ----------------- Yes a lot of us would like to have a way to prevent the kernel from completing the normal evaluation process. In the notebook below I give you other things I would like to do along the same lines. For now things like this are a little difficult to accomplish. You can copy the Notebook stuff below into Mathematica 3.0. Regards, Ted Ersek (-----------------) Notebook[{ Cell[CellGroupData[{ Cell[BoxData[ \(Simplify[2/\((1 - w^2*x^2*\((y*z)\)^2)\)]\)], "Input"], Cell[BoxData[ \(2\/\(1 - \((w\ x\ y\ z)\)\^2\)\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(FullSimplify[\((18446744073709551616 - n)\)/5]\)], "Input"], Cell[BoxData[ \(\(2\^64 - n\)\/5\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(poly = 2\ e\^2 - 4\ e\ h + 2\ h\^2 + 3\ e\ s - 3\ h\ s + 5\ k \((e - h)\)\^3; \nnewpoly = Series[poly, {e, h, 5}] // Normal\)], "Input"], Cell[BoxData[ \(3\ s\ \((e - h)\) + 2\ \((e - h)\)\^2 + 5\ k\ \((e - h)\)\^3\)], "Output"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ \(ser = \((Series[BesselI[0, x], {x, 0, 8}, FullEvaluation -> False] // Normal) \)\)], "Input"], Cell[BoxData[ \(1 + x\^2\/2\^2 + x\^4\/\(\(2\^4\) \((\(2!\))\)\^2\) + x\^6\/\(\(2\^6\) \((\(3!\))\)\^2\) + x\^8\/\(\(2\^8\) \((\(4!\))\)\^2\)\)], "Output"] }, Open ]] }, FrontEndVersion->"Microsoft Windows 3.0", ScreenRectangle->{{0, 800}, {0, 544}}, WindowSize->{664, 420}, WindowMargins->{{40, Automatic}, {Automatic, 5}} ]